Journal of Electroceramics

, Volume 18, Issue 3–4, pp 205–218

Oxygen permeability, stability and electrochemical behavior of \( \Pr _{2} {\text{NiO}}_{{4 + \delta }} \)-based materials

  • A. V. Kovalevsky
  • V. V. Kharton
  • A. A. Yaremchenko
  • Y. V. Pivak
  • E. V. Tsipis
  • S. O. Yakovlev
  • A. A. Markov
  • E. N. Naumovich
  • J. R. Frade
Article

Abstract

The high-temperature electronic and ionic transport properties, thermal expansion and stability of dense \( \Pr _{2} {\text{NiO}}_{{4 + \delta }} ,\Pr _{2} {\text{Ni}}_{{0.9}} {\text{Fe}}_{{0.1}} {\text{O}}_{{4 + \delta }} \) and \( \Pr _{2} {\text{Ni}}_{{0.8}} {\text{Cu}}_{{0.2}} {\text{O}}_{{4 + \delta }} \) ceramics have been appraised in comparison with K2NiF4-type lanthanum nickelate. Under oxidizing conditions, the extensive oxygen uptake at temperatures below 1073–1223 K leads to reversible decomposition of Pr2NiO4-based solid solutions into Ruddlesden–Popper type Pr4Ni3O10 and praseodymium oxide phases. The substitution of nickel with copper decreases the oxygen content and phase transition temperature, whilst the incorporation of iron cations has opposite effects. Both types of doping tend to decrease stability in reducing atmospheres as estimated from the oxygen partial pressure dependencies of total conductivity and Seebeck coefficient. The steady-state oxygen permeability of \( \Pr _{2} {\text{NiO}}_{{4 + \delta }} \) ceramics at 1173–1223 K, limited by both surface-exchange kinetics and bulk ionic conduction, is similar to that of \( {\text{La}}_{2} {\text{NiO}}_{{4 + \delta }} \). The phase transformation on cooling results in considerably higher electronic conductivity and oxygen permeation, but is associated also with significant volume changes revealed by dilatometry. At 973–1073 K, porous \( \Pr _{2} {\text{Ni}}_{{0.8}} {\text{Cu}}_{{0.2}} {\text{O}}_{{4 + \delta }} \) electrodes deposited onto lanthanum gallate-based solid electrolyte exhibit lower anodic overpotentials compared to \( {\text{La}}_{2} {\text{Ni}}_{{0.8}} {\text{Cu}}_{{0.2}} {\text{O}}_{{4 + \delta }} \), whilst cathodic reduction decreases their performance.

Keywords

Praseodymium nickelate Mixed ionic–electronic conductor Oxygen permeation Thermal expansion SOFC cathode 

References

  1. 1.
    B.Vigeland, R.Glenne, T.Breivik, S.Julsrud, Int. Patent Application PCT WO 99/59702 (1999)Google Scholar
  2. 2.
    J.A. Kilner, C.K.M. Shaw, Solid State Ionics 154–155, 523 (2002)CrossRefGoogle Scholar
  3. 3.
    V.V.Kharton, A.P.Viskup, A.V.Kovalevsky, E.N.Naumovich, Solid State Ionics 143, 337 (2001)CrossRefGoogle Scholar
  4. 4.
    E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Solid State Sci. 5, 973 (2003)CrossRefGoogle Scholar
  5. 5.
    E. Boehm, J.-M. Bassat, P. Dordor, F. Mauvy, J.-C. Grenier, Ph. Stevens, Solid State Ionics 176, 2717 (2005)CrossRefGoogle Scholar
  6. 6.
    V.V. Vashook, I.I. Yushkevich, L.V. Kokhanovsky, L.V. Makhnach, S.P. Tolochko, I.F. Kononyuk, H. Ullmann, H. Altenburg, Solid State Ionics 119, 23 (1999)CrossRefGoogle Scholar
  7. 7.
    P. Odier, Ch. Allançon, J.M. Bassat, J. Solid State Chem. 153, 381 (2000)CrossRefGoogle Scholar
  8. 8.
    D.C. Zhu, X.Y. Xu, S.J. Feng, W. Liu, C.S. Chen, Catal. Today 82, 151 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Miyoshi, T. Furuno, H. Matsumoto, T. Ishihara, Solid State Ion. 177, 2269 (2006)CrossRefGoogle Scholar
  10. 10.
    V.V. Kharton, E.V. Tsipis, A.A. Yaremchenko, J.R. Frade, Solid State Ion. 166, 327 (2004)CrossRefGoogle Scholar
  11. 11.
    S.J. Skinner, J.A. Kilner, Solid State Ion. 135, 709 (2000)CrossRefGoogle Scholar
  12. 12.
    A.A. Yaremchenko, A.A. Valente, V.V. Kharton, E.V. Tsipis, J.R. Frade, E.N. Naumovich, J. Rocha, F.M.B. Marques, Catal. Letters 91, 169 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Allançon, A. Gonthier-Vassal, J.M. Bassat, J.P. Loup, P. Odier, Solid State Ion. 74, 239 (1994)CrossRefGoogle Scholar
  14. 14.
    L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.L. Exarhos, Mater. Lett. 10, 6 (1990)CrossRefGoogle Scholar
  15. 15.
    J. Rodriguez-Carvajal, Physica B. 192, 55 (1993)CrossRefGoogle Scholar
  16. 16.
    E.N. Naumovich, M.V. Patrakeev, V.V. Kharton, A.A. Yaremchenko, D.I. Logvinovich, F.M.B. Marques, Solid State Sci. 7, 1353 (2005)CrossRefGoogle Scholar
  17. 17.
    I.A. Leonidov, V.L. Kozhevnikov, E.B. Mitberg, M.V. Patrakeev, V.V. Kharton, F.M.B. Marques, J. Mater. Chem. 11, 1201 (2001)CrossRefGoogle Scholar
  18. 18.
    V.V. Kharton, V.N. Tikhonovich, Li Shuangbao, E.N. Naumovich, A.V. Kovalevsky, A.P. Viskup, I.A. Bashmakov, A.A. Yaremchenko, J. Electrochem. Soc. 145, 1363 (1998)CrossRefGoogle Scholar
  19. 19.
    E.V. Tsipis, V.V. Kharton, I.A. Bashmakov, E.N. Naumovich, J.R. Frade, J. Solid State Electrochem. 8, 674 (2004)CrossRefGoogle Scholar
  20. 20.
    J. Rodríguez-Carvajal, M.T. Fernández-Díaz, J.L. Martínez, J. Phys.: Condens. Matter 3, 3215(1991)CrossRefGoogle Scholar
  21. 21.
    D.J. Buttrey, J.D. Sullivan, G. Shirane, K. Yamada, Phys. Rev. B 42, 3944 (1990)CrossRefGoogle Scholar
  22. 22.
    M. Medarde, A. Fontaine, J.L. Garcia-Munoz, J. Rodriguez-Carvajal, M. de Santis, M. Sacchi, G. Rossi, P. Lacorre, Phys. Rev. B 46, 14975 (1992)CrossRefGoogle Scholar
  23. 23.
    C. Allançon, P. Odier, J.M. Bassat, J.P. Loup, J. Solid State Chem. 131, 167 (1997)CrossRefGoogle Scholar
  24. 24.
    J.M. Bassat, C. Allançon, P. Odier, J.P. Loup, M. Deus Carvalho, A. Wattiaux, Eur. J. Solid State Inorg. Chem. 35, 173 (1998)CrossRefGoogle Scholar
  25. 25.
    Ph. Lacorre, J. Solid State Chem. 97, 495 (1992)CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, M. Greenblatt, J. Solid State Chem. 117, 236 (1995)CrossRefGoogle Scholar
  27. 27.
    M.T. Fernández-Díaz, J.L. Martínez, J. Rodríguez-Carvajal, Solid State Ionics 63–65, 902 (1993)CrossRefGoogle Scholar
  28. 28.
    M. Zinkevich, F. Aldinger, J. Alloys Compd. 375, 147 (2004)CrossRefGoogle Scholar
  29. 29.
    V.V. Kharton, A.A. Yaremchenko, E.N. Naumovich, J. Solid State Electrochem. 3, 303 (1999)CrossRefGoogle Scholar
  30. 30.
    G.G. Charette, S.N.Flengas, J. Electrochem. Soc. 115, 796 (1968)CrossRefGoogle Scholar
  31. 31.
    H.H. Möbius, in Ext. Abst. 37th Meeting of International Society of Electrochemistry, Vilnius, Lithuania (1986), vol. 1, p. 136Google Scholar
  32. 32.
    A. Manthiram, F. Prado, T. Armstrong, Solid State Ion. 152–153, 647 (2002)CrossRefGoogle Scholar
  33. 33.
    P. Huang, A. Petric, in Ionic and Mixed Conducting Ceramics III, ed. By T.A. Ramanarayanan (The Electrochemical Society, Pennington, NJ, 1998) PV97-24, p. 396Google Scholar
  34. 34.
    A.A. Yaremchenko, V.V. Kharton, E.N. Naumovich, D.I. Shestakov, V.F. Chukharev, A.V. Kovalevsky, A.L. Shaula, J.R. Frade, F.M.B. Marques, Solid State Ion. 177, 549 (2006)CrossRefGoogle Scholar
  35. 35.
    V.V. Kharton, A.A. Yaremchenko, A.P. Viskup, M.V. Patrakeev, I.A. Leonidov, V.L. Kozhevnikov, F.M. Figueiredo, A.L. Shaulo, E.N. Naumovich, F.M.B. Marques, J. Electrochem. Soc. 149, E125 (2002)CrossRefGoogle Scholar
  36. 36.
    V.V. Kharton, E.V. Tsipis, I.P. Marozau, A.A. Yaremchenko, A.A. Valente, A.P. Viskup, J.R. Frade, E.N. Naumovich, J. Rocha, J. Solid State Electrochem. 9, 10 (2005)CrossRefGoogle Scholar
  37. 37.
    K. Sasaki, J.-P. Wurth, R. Gschwend, M. Gödickemeier, L.J. Gauckler, J. Electrochem. Soc. 143, 530 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. V. Kovalevsky
    • 1
  • V. V. Kharton
    • 1
    • 2
  • A. A. Yaremchenko
    • 1
  • Y. V. Pivak
    • 1
  • E. V. Tsipis
    • 1
  • S. O. Yakovlev
    • 1
  • A. A. Markov
    • 3
  • E. N. Naumovich
    • 1
    • 2
  • J. R. Frade
    • 1
  1. 1.Department of Ceramics and Glass Engineering, CICECOUniversity of AveiroAveiroPortugal
  2. 2.Institute of Physicochemical ProblemsBelarus State UniversityMinskBelarus
  3. 3.Institute of Solid State ChemistryUral Division of RASEkaterinburgRussia

Personalised recommendations