Journal of Electroceramics

, Volume 17, Issue 2–4, pp 741–748

Oxygen permeation properties and surface modification of acceptor-doped CeO2/MnFe2O4 composites

  • Hitoshi Takamura
  • Hiroshi Sugai
  • Masato Watanabe
  • Takehiro Kasahara
  • Atsunori Kamegawa
  • Masuo Okada
2. Energy: Fuel cells, batteries etc.

Abstract

The preparation and oxygen permeation properties of the (Ce0.8Pr0.2)O2−δ − x vol% MnFe2O4 composites, where x = 0 to 35, have been investigated. The samples were prepared by the Pechini method. In the case of Ce0.8Pr0.2O2−δ, an oxygen flux density of 6 μmol⋅cm−2⋅s−1 (L = 0.0247 cm) and the maximum methane conversion of 50% were attained at 1000C. Unlike composites consisting of Gd-doped CeO2 and MnFe2O4, the oxygen permeability of the (Ce0.8Pr0.2)O2−δ – x vol% MnFe2O4 composites was almost constant regardless of the volume fraction of MnFe2O4; however, the optimum volume fraction of MnFe2O4 was determined to be 5 to 25 in the context of the chemical and mechanical stabilities under methane conversion atmosphere. In addition, the surface modification of the (Ce0.8Gd0.2)O2−δ – 15 vol% MnFe2O4 composite was performed by using the FePt nanoparticles. The catalyst loading of 2.8 mg/cm2 on the both side of the 0.3 mm-thick (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite increased the oxygen flux density from 0.30 to 0.76 μmol⋅cm−2⋅s−1 in the case of He/air gradients; however, the effect seems to be reduced in the case of high oxygen flux density caused by a large pO2 gradient. Moreover, the Langmuir-Blodgett film of the FePt nanoparticles were successfully prepared on the tape-cast (Ce0.8Gd0.2)O2−δ – 15vol% MnFe2O4 composite. Hydrophobic treatments for the surface of the composite were crucial to achieve high transfer ratio for the deposition of the LB film.

Keywords

Oxygen permeable ceramics Pr-doped ceria Methane conversion FePt nanoparticles Langmuir-Blodgett film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Teraoka, H.M. Zhang, S. Furukawa, and N. Yamazoe, Chemistry Letters, 1743 (1985).Google Scholar
  2. 2.
    P.N. Dyer, R.E. Richards, S.L. Russek, and D.M. Taylor, Solid State Ionics, 134, 21 (2000).CrossRefGoogle Scholar
  3. 3.
    Z.P. Shao, G.X. Xiong, H. Dong, W.H. Yang, and L.W. Lin, Separation and Purification Technology, 25, 97 (2001).CrossRefGoogle Scholar
  4. 4.
    T. Ishihara, Y. Tsuruta, T. Todaka, H. Nishiguchi, and Y. Takita, Solid State Ionics, 152, 709 (2002).CrossRefGoogle Scholar
  5. 5.
    H. Takamura, K. Enomoto, Y. Aizumi, A. Kamegawa, and M. Okada, Solid State Ionics, 175, 379 (2004).CrossRefGoogle Scholar
  6. 6.
    V.V. Kharton, A.V. Kovalevsky, A.P. Viskup, F.M. Figueiredo, A.A. Yaremchenko, E.N. Naumovich, and F.M.B. Marques, Journal of the European Ceramic Society, 21, 1763 (2001).CrossRefGoogle Scholar
  7. 7.
    U. Nigge, H.D. Wiemhofer, E.W.J. Romer, H.J.M. Bouwmeester, and T.R. Schulte, Solid State Ionics, 146, 163 (2002).CrossRefGoogle Scholar
  8. 8.
    H. Takamura, M. Kawai, K. Okumura, A. Kamegawa, and M. Okada, in Preparation and Oxygen Permeability of Gd-Doped Ceria and Spinel-Type Ferrite Composites (Materials Research Society, Boston, USA, 2002), pp. EE8.11.1.Google Scholar
  9. 9.
    H. Takamura, K. Okumura, Y. Koshino, A. Kamegawa, and M. Okada, Journal of Electroceramics, 13, 613 (2004).CrossRefGoogle Scholar
  10. 10.
    T.S. Stefanik and H.L. Tuller, Journal of Electroceramics, 13, 799 (2004).CrossRefGoogle Scholar
  11. 11.
    P. Shuk and M. Greenblatt, Solid State Ionics, 116, 217 (1999).CrossRefGoogle Scholar
  12. 12.
    D.P. Fagg, V.V. Kharton, A. Shaula, I.P. Marozau, and J.R. Frade, Solid State Ionics, 176, 1723 (2005).CrossRefGoogle Scholar
  13. 13.
    H. Takamura and H.L. Tuller, Solid State Ionics, 134, 67 (2000).CrossRefGoogle Scholar
  14. 14.
    H. Takamura, K. Enomoto, A. Kamegawa, and M. Okada, Solid State Ionics, 154, 581 (2002).CrossRefGoogle Scholar
  15. 15.
    C. Kleinlogel and L.J. Gauckler, Solid State Ionics, 135, 567 (2000).CrossRefGoogle Scholar
  16. 16.
    S.H. Sun, C.B. Murray, D. Weller, L. Folks, and A. Moser, Science, 287, 1989 (2000).CrossRefGoogle Scholar
  17. 17.
    H. Takamura, T. Kobayashi, T. Kasahara, A. Kamegawa, and M. Okada, Journal of Alloys and Compounds, 408–412, 1084 (2006).CrossRefGoogle Scholar
  18. 18.
    H.I. Yoo and H.L. Tuller, Journal of Materials Research, 3, 552 (1988).Google Scholar
  19. 19.
    G. Bonsdorf, K. Schafer, K. Teske, H. Langbein, and H. Ullmann, Solid State Ionics, 110, 73 (1998).CrossRefGoogle Scholar
  20. 20.
    Y. Takasu, T. Sugino, and Y. Matsuda, Journal of Applied Electrochemistry, 14, 79 (1984).CrossRefGoogle Scholar
  21. 21.
    M. Nauer, C. Ftikos, and B.C. H. Steele, Journal of the European Ceramic Society, 14, 493 (1994).CrossRefGoogle Scholar
  22. 22.
    A.E. Sovestnov, V.A. Shaburov, B.T. Melekh, I.A. Smirnov, Y.P. Smirnov, A.V. Tyunis, and A. I. Egorov, Fizika Tverdogo Tela, 36, 1140 (1994).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Hitoshi Takamura
    • 1
    • 2
  • Hiroshi Sugai
    • 2
    • 3
  • Masato Watanabe
    • 4
  • Takehiro Kasahara
    • 1
    • 5
  • Atsunori Kamegawa
    • 1
  • Masuo Okada
    • 1
  1. 1.Department of Materials Science, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.CREST, Japan Science and Technology AgencyJapan
  3. 3.Three-R CorporationSendaiJapan
  4. 4.MHW Informatics, Inc.SendaiJapan
  5. 5.Tohoku UniversityJapan

Personalised recommendations