Journal of Electroceramics

, Volume 16, Issue 1, pp 29–34 | Cite as

Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization

  • J. M. Macak
  • L. V. Taveira
  • H. Tsuchiya
  • K. Sirotna
  • J. Macak
  • P. Schmuki


The formation of self-organized porous titania nanotubes is achieved by electrochemical anodization under specific experimental conditions. In present work, the formation of porous titania nanotubes on titanium substrates is investigated in several SO42−/F based electrolytes. The presence of some non-porous layers covering the porous layers and accompanying the pore growth is observed. We discuss in details the influence of different electrolyte composition on the structure of self-organized porous layers, investigate the conditions for ideal pore growth. SEM investigations and XRD, AES and EDX surface analyses are carried out to characterize the self-organized porous layers. The results show that using SO42−/F electrolytes with different cations can drastically influence the final morphology of the self-organized porous nanotubes. We furthermore show that the nanotubes consist of TiO2 and that they remain unchanged when annealed.


Self-organization Titanium dioxide Nanotube Oxide dissolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Masuda and K. Fukuda, Science, 268, 1466 (1995).Google Scholar
  2. 2.
    O. Jessensky, F. Muller, and U. Gösele, Appl. Phys. Lett., 72, 1173 (1998).CrossRefGoogle Scholar
  3. 3.
    L.T. Canham, Appl. Phys. Lett., 57, 1046 (1990).CrossRefGoogle Scholar
  4. 4.
    V. Lehman and H. Föll, J. Electrochem. Soc., 137, 653 (1990)Google Scholar
  5. 5.
    H.Tsuchiya, M. Hueppe, T. Djenizian, and P. Schmuki, Surf. Sci., 547, 268 (2003).CrossRefGoogle Scholar
  6. 6.
    H. Masuda and K. Fukuda, Appl.Phys. Letters, 78, 826 (2001).CrossRefGoogle Scholar
  7. 7.
    H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, Jpn. J. Appl. Phys., 38, L1403 (1999).CrossRefGoogle Scholar
  8. 8.
    R.B. Wehrspohn, K. Nielsch, A. Birner, J. Schilling, F. Müller, A.P. Li, and U. Gösele, Pits and Pores II, edited by P. Schmuki, D.J. Lockwood, Y.H. Ogata, and H.S. Isaacs, Proc.Vol. ECS 2000-25 (2000) p. 168.Google Scholar
  9. 9.
    V. Zwilling, M. Aucouturier, and E. Darque-Ceretti, Electrochim. Acta, 45, 921 (1999).CrossRefGoogle Scholar
  10. 10.
    M. Gotic, M. Ivanda, A. Sekulic, S. Music, S. Popovic, A. Turkovic, and K. Furic, Mater. Lett., 28, 225 (1996).CrossRefGoogle Scholar
  11. 11.
    Li, W., Shah, S. I., C.-P. Haung, and C. Ni, Mater. Sci. Eng. B, 96, 247 (2002).CrossRefGoogle Scholar
  12. 12.
    J. Choi, R.B. Wehrspohn, J. Lee, and U. Gösele, Electrochim. Acta, 49, 2645 (2004).CrossRefGoogle Scholar
  13. 13.
    Y.T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Biomaterials, 23, 491 (2002).CrossRefGoogle Scholar
  14. 14.
    J.C. Marchenoir, J.P. Loup, and J. Masson, Thin Solid Films, 66, 357 (1980).CrossRefGoogle Scholar
  15. 15.
    Y. Mueller and S. Virtanen, Pits and Pores II, edited by P. Schumki, D.J. Lockwood, Y.H. Ogata, and H.S. Isaacs, Proc.Vol. ECS 2000-25 (2000) p. 294.Google Scholar
  16. 16.
    D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey, J. Mater. Res., 16, 3331 (2001).Google Scholar
  17. 17.
    R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Solid-State Lett., 6, B12 (2003).CrossRefGoogle Scholar
  18. 18.
    J.M. Macak, K. Sirotna, and P. Schmuki, Electrochim. Acta, 50, 3679 (2005).CrossRefGoogle Scholar
  19. 19.
    J.M. Macak, H. Tsuchiya, and P. Schmuki, Angew. Chem. Int. Ed., 44, 2100 (2005).CrossRefGoogle Scholar
  20. 20.
    A. Ghicov, H. Tsuchiya, J.M. Macak, and P. Schmuki, Electrochem. Commun., 7, 505 (2005).CrossRefGoogle Scholar
  21. 21.
    K.S. Raja, M. Misra, and K. Paramguru, Electrochim. Acta, 51, 154 (2005).CrossRefGoogle Scholar
  22. 22.
    J. Zhao, X. Wang, R. Chen, and L. Li, Solid St. Comm., 134, 705 (2005).CrossRefGoogle Scholar
  23. 23.
    X. Quan, S.Yang, X. Ruan, and H. Zhao, Environ. Sci. Technol., 39, 3770 (2005).CrossRefGoogle Scholar
  24. 24.
    Q. Cai, M. Paulose, O.K. Varghese, and C.A. Grimes, J. Mat. Res., 20, 230 (2005).CrossRefGoogle Scholar
  25. 25.
    A. Fujishima, T.N. Rao, and D.A. Tryk, J. Photochem. Photobiol.C-Photochem. Rev., 1, 1 (2001).CrossRefGoogle Scholar
  26. 26.
    O.K. Varghese, D. Gong, K.G. Ong, and C.A. Grimes, Sensors and Actuators, B93, 338 (2003).Google Scholar
  27. 27.
    D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine (Springer, Berlin, 2001).Google Scholar
  28. 28.
    J.M. Macak, H. Tsuchiya, L. Taveira, and A. Ghicov, J. Biomed. Mat. Res., in press.Google Scholar
  29. 29.
    H. Tsuchiya and P. Schmuki, Electrochem. Commun., 6, 1131 (2004).CrossRefGoogle Scholar
  30. 30.
    H. Tsuchiya, J.M. Macak, L.V. Taveira, and P. Schmuki, Chem. Phys. Lett., 410, 188 (2005).CrossRefGoogle Scholar
  31. 31.
    H. Tsuchiya and P. Schmuki, Electrochem. Commun., 7, 49 (2005).CrossRefGoogle Scholar
  32. 32.
    H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, Electrochem. Commun., 7, 295 (2005).CrossRefGoogle Scholar
  33. 33.
    I. Sieber, B. Kannan, and P. Schmuki, Electrochem. Solid-State Lett., 8, J10 (2005).CrossRefGoogle Scholar
  34. 34.
    I. Sieber and P. Schmuki, J. Electrochem Soc., in press.Google Scholar
  35. 35.
    I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Electrochem. Commun., 7, 97 (2005).CrossRefGoogle Scholar
  36. 36.
    N.T.C. Oliveira, S.R. Biaggio, R.C. Rocha-Filho, and N. Bocchi, J. Braz. Chem. Soc., 13, 463 (2002).Google Scholar
  37. 37.
    H. Tsuchiya, J.M. Macak, I. Sieber, and P. Schmuki, Small, 1, 722 (2005).CrossRefGoogle Scholar
  38. 38.
    J.W. Schultze, M.M. Lohrengel, and D. Ross, Electrochim. Acta, 28, 973 (1983).CrossRefGoogle Scholar
  39. 39.
    L. Taveira, J.M. Macak, H. Tsuchiya, L.F.P. Dick, and P. Schmuki, J. Electrochem. Soc., 152, B405 (2005).CrossRefGoogle Scholar
  40. 40.
    N. Bao, X. Feng, X. Lu, and Z. Yang, J. Mater. Sci., 37, 3035 (2002).CrossRefGoogle Scholar
  41. 41.
    O.K. Varghese, D. Dong, M. Paulose, C.A. Grimes, and E.C. Dickey, J. Mater. Res., 18, 156 (2003).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • J. M. Macak
    • 1
  • L. V. Taveira
    • 1
  • H. Tsuchiya
    • 1
  • K. Sirotna
    • 2
  • J. Macak
    • 2
  • P. Schmuki
    • 1
  1. 1.Department of Materials Science, Chair for Surface Science and CorrosionUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of Power EngineeringInstitut of Chemical Technology PraguePragueCzech Republic

Personalised recommendations