Advertisement

Journal of Electroceramics

, Volume 16, Issue 1, pp 93–98 | Cite as

Microporous Stilbite single crystals for alcohol sensing

  • O. SchäfEmail author
  • V. Wernert
  • H. Ghobarkar
  • P. Knauth
Article

Abstract

The possibility of shape-selective resistive gas sensors for polar molecules using the microporous alumo-silicate Stilbite is investigated. The electrical impedance of natural Stilbite single crystals at 80°C decreases in presence of methanol, 2-propanol and 3-pentanol, but increases with increasing water and neo-pentanol vapour pressure. The interaction can be described by a Langmuir-type adsorption equation. The conductivity effects are interpreted mainly by mobility effects, due to sterical interactions in the zeolite channels.

Keywords

Adsorption Impedance spectroscopy Electrical conductivity Alcohols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.S. Coombs, A. Alberti, T. Armbruster, G. Artioli, C. Colella, E. Galli, J.D. Grice, F. Liebau, J.A. Mandarino, H. Minato, E.H. Nickel, E. Passaglia, D. Peacor, S. Quartieri, R. Rinaldi, M. Ross, R.A. Sheppard, E. Tillmanns, and G. Vezzalini, Canadian Mineralogist, 35, 1571 (1997).Google Scholar
  2. 2.
    C. Baerlocher, W.M. Meier, and D.H. Olson, (eds.) Atlas of Zeolite Framework Types, 5th rev. edn. (Elsevier, Amsterdam, London, New York, Oxford, Paris, Shannon, Tokyo, 2001).Google Scholar
  3. 3.
    G. Gottardi and E. Galli, Natural Zeolites (Springer, Heidelberg, N.Y., Tokyo, 1985).Google Scholar
  4. 4.
    H.G. Karge and J. Weitkamp (eds.), Molecular Sieves, Science and Technology, Vol. 1 (Synthesis. Springer, Berlin, Heidelberg, N.Y., 1998).Google Scholar
  5. 5.
    J. Weitkamp and L. Puppe (eds.), Catalysis and Zeolites, Fundamentals and Application (Springer Verlag, Berlin, Heidelberg, N.Y., London, Paris, Tokyo, 1999).Google Scholar
  6. 6.
    H. Ghobarkar, O. Schäf, Y. Massiani, and P. Knauth, The Reconstruction of Natural Zeolites (Kluwer, Dordrecht, 2003).Google Scholar
  7. 7.
    M.H. Simonot-Grange, Clays and Clay Minerals, 27(6), 423 (1979).Google Scholar
  8. 8.
    H. Ghobarkar, O. Schäf, and U. Guth, Prog. Solid State Chem. 27, 29 (1999).CrossRefGoogle Scholar
  9. 9.
    Calculated using “Cerius2” program. See at www.accelrys.com.
  10. 10.
    O. Schäf, H. Ghobarkar, F. Adolf, and P. Knauth, Solid State Ionics, 143, 433 (2001).CrossRefGoogle Scholar
  11. 11.
    O. Schäf, H. Ghobarkar, A.C. Steinbach, and U. Guth, Fresenius J. Anal. Chem., 367, 388 (2000).CrossRefGoogle Scholar
  12. 12.
    O. Schäf, H. Ghobarkar, and U. Guth, Ionics, 3, 282 (1997).CrossRefGoogle Scholar
  13. 13.
    M.H. Simonot-Grange, Clays and Clay Minerals, 27, 423 (1979).Google Scholar
  14. 14.
    G. Kelemen, W. Lortz, and G. Schön, J. Mat. Sci., 24, 333 (1989).CrossRefGoogle Scholar
  15. 15.
    J. Li, J. Qiu, Y. Sun, and Y. Long, Microporous Mesoporous Mater., 37, 365 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • O. Schäf
    • 1
    Email author
  • V. Wernert
    • 1
  • H. Ghobarkar
    • 1
  • P. Knauth
    • 1
  1. 1.MADIRELUMR6121 CNRS-Université de ProvenceMarseille Cedex 20France

Personalised recommendations