Journal of Electroceramics

, Volume 17, Issue 2–4, pp 479–485

Pyroelectric electron emission from −Z face polar surface of lithium niobate monodomain single crystal

  • El Mostafa Bourim
  • Chang-Wook Moon
  • Seung-Woon Lee
  • Vadim Sidorkin
  • In Kyeong Yoo
1. Informatics: Dielectrics, Ferroelectrics, and Piezoelectrics

Abstract

Pyroelectric electron emission current measurements and spatial electron current distribution collections were investigated from –Z face polar surface of lithium niobate monodomain crystals.

The electron emission was detected during cooling due to a field ionization effect. The gap distance variation between the crystal surface and the electron collector significantly influenced the emission behavior. For small gaps (<2 mm) the emission was controlled by intermittent runway ionizations (screening of charge species (electrons and +ions) from plasma breakdown). Whereas, for large gaps (>2 mm) the pyroelectric electron emission was supplied from a soft and maintained plasma medium formation.

Keywords

Pyroelectric Electron emission Lithium niobate Plasma breakdown Runway ionization Field emission Field ionization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Rosenblum, P. Braunlich, and J.P. Carrico, Appl. Phys. Lett., 25(1), 17 (1974).CrossRefGoogle Scholar
  2. 2.
    G. Rosenman, D. Shur, Ya. E. Krasik, and A. Dunaevsky, J. Appl. Phys., 88(11), 6109 (2000).CrossRefGoogle Scholar
  3. 3.
    E.M. Bourim, D.-W. Kim, V. Sidorkin, C.-W. Moon, and I.K. Yoo, J. Electroceramics, 13, 293 (2004).CrossRefGoogle Scholar
  4. 4.
    D.-W. Kim, E.M. Bourim, S.-H. Jeong, and I.K. Yoo, Physica B, 352, 200 (2004).CrossRefGoogle Scholar
  5. 5.
    E. Wagenaars, M.D. Bowden, and G.M.W. Kroesen, Plasma Sources Sci. Technol., 14, 342 (2005).CrossRefGoogle Scholar
  6. 6.
    Y.E. Krasik, K. Chirko, A. Dunaevsky, J.Z. Gleizer, A. Krokhmal, A. Sayapin, and J. Felsteiner, IEEE Trans. Plasma Sci., 31(1), 49 (2003).CrossRefGoogle Scholar
  7. 7.
    H.C. Miller, IEEE Trans. Electr. Insul., 24(5), 765 (1989).CrossRefGoogle Scholar
  8. 8.
    N.C. Jaitly and T.S. Sudarshan, J. Appl. Phys., 64(7), 3411 (1988).CrossRefGoogle Scholar
  9. 9.
    J.D. Brownridge and S.M. Shafroth, Appl. Phys. Lett., 79(20), 3364 (2001).CrossRefGoogle Scholar
  10. 10.
    H.O. Funsten, D.M. Suszcynsky, S.M. Ritzau, and R. Korde, IEEE Trans. Nuclear Sci., 44(6), 2561 (1997).CrossRefGoogle Scholar
  11. 11.
    D.M. Tanenbaum, C.W. Lo, M. Isaacson, H.G. Craighead, M.J. Rooks, K.Y. Lee, W.S. Huang, and T.H.P. Chang, J. Vac. Sci. Technol. B, 14(6), 3829 (1996).CrossRefGoogle Scholar
  12. 12.
    D. Shur and G. Rosenman, J. Appl. Phys., 80(6), 3445 (1996).CrossRefGoogle Scholar
  13. 13.
    R. Gomer, Field Emission and Field Ionization (Springer, New York, 1993).Google Scholar
  14. 14.
    J.D. Brownridge and S.M. Shafroth, Appl. Phys. Lett., 83(7), 1477 (2003).CrossRefGoogle Scholar
  15. 15.
    J.D. Brownridge and S.M. Shafroth, J. Electrostatics, 63, 249 (2005).CrossRefGoogle Scholar
  16. 16.
    M.S. Naidu and V. Kamaraju, High Voltage Engineering (McGraw Hill, New York, 1995).Google Scholar
  17. 17.
    C.W. Moon, D.-W. Kim, G. Rosenman, T.K. Ko, and I.K. Yoo, Jpn. J. Appl. Phys., 42, 3523 (2003).CrossRefGoogle Scholar
  18. 18.
    D.-W. Kim, C.W. Moon, S.-H. Jeong, and I.K. Yoo, J. Appl. Phys., 96(11), 6884 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • El Mostafa Bourim
    • 1
  • Chang-Wook Moon
    • 1
  • Seung-Woon Lee
    • 1
  • Vadim Sidorkin
    • 1
  • In Kyeong Yoo
    • 1
  1. 1.Samsung Advanced Institute of Technology, U-TeamKyongkiSouth Korea

Personalised recommendations