Journal of Electroceramics

, Volume 14, Issue 1, pp 53–58 | Cite as

Dielectric and Piezoelectric Properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3-NaNbO3Lead-Free Ceramics

  • Yue-Ming Li
  • Wen Chen
  • Qing Xu
  • Jing Zhou
  • Hua-Jun Sun
  • Mei-Song Liao
Article

Abstract

The ternary lead-free piezoelectric ceramics system of (1 − x) [0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3] − xNaNbO3(x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by conventional solid state reaction method. The crystal structure, dielectric, piezoelectric properties and P-E hysteresis loops were investigated. The crystalline structure of all compositions is mono-perovskite phase ascertained by XRD, and the lattice constant was calculated from the XRD data. Temperature dependence of dielectric constant εr and dissipation factor tan δ measurement revealed that all compositions experienced two phase transitions: from ferroelectric to anti-ferroelectric and from anti-ferroelectric to paraelectric, and these two phase transitions have relaxor characteristics. Both transition temperatures Td and Tm are lowered due to introduction of NaNbO3. P-E hysteresis loops show that 0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3 ceramics has the maximum Pr and Ec corresponding to the maximum values of electromechanical coupling factor Kp and piezoelectric constant d33. The piezoelectric constant d33 and electromechanical coupling factor Kp decrease a little, while the dielectric constant ε33T0 improves much more when the concentration of NaNbO3 is 8 mol%.

Keywords

dielectric properties piezoelectric properties Na0.5Bi0.5TiO3 perovskite relaxor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, and N.N. Krainik, Sov. Phys. Solid State, 2, 2651 (1961).Google Scholar
  2. 2.
    T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., 30(9B), 2236 (1991).Google Scholar
  3. 3.
    T. Takenaka and K. Sakata, Ferroelectrics, 95, 153 (1989).Google Scholar
  4. 4.
    H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 36, 6055 (1997).Google Scholar
  5. 5.
    S.-E. Park and K.-S.Hong, J. Mater. Res., 12, 2152 (1997).Google Scholar
  6. 6.
    A. Sasaki, T. Chiba, Y. Mamiya, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999).Google Scholar
  7. 7.
    T.B. Wang, L.E. Wang, Y.K. Lu, and D.P.Zhou, J. Chin. Ceram. Soc., 14, 14 (1986).Google Scholar
  8. 8.
    A. Herabut and A. Safari, J. Am. Ceram. Soc., 80(11), 2954 (1997).Google Scholar
  9. 9.
    T. Takenaka, T. Okuda, and K. Takegahara, Ferroelectrics, 196, 175 (1997).Google Scholar
  10. 10.
    M. Onoe and H. Juumonji, J. Acoust. Soc. Am., 47, 974 (1967).Google Scholar
  11. 11.
    G.A. Smolenskii, J. Phys. Soc. Jpn., 28(suppl), 26 (1970).Google Scholar
  12. 12.
    S. Wakimoto, C. Stock, Z.-G. Ye, W.Chen, P. M. Gehring, and G.Shirane, Phys. Rev. B., 66, 224102 (2002).Google Scholar
  13. 13.
    O. Hidehiro, I. Makoto, Y.A. Naohiko, and I. Yoshihiro, Jpn. J. Appl. Phys., 37, 5410 (1998).Google Scholar
  14. 14.
    C.-S. Tu, I.G. Siny, and V.H. Schmidt, Phys. Rev. B, 49(7), 11550 (1994).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Yue-Ming Li
    • 1
    • 2
  • Wen Chen
    • 1
  • Qing Xu
    • 1
  • Jing Zhou
    • 1
  • Hua-Jun Sun
    • 1
  • Mei-Song Liao
    • 1
  1. 1.Institute of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Jingdezhen Ceramic InstituteJingdezhenPeople’s Republic of China

Personalised recommendations