Journal of Electroceramics

, Volume 15, Issue 3, pp 215–221 | Cite as

Ni-Cu-Zn Ferrites for Low Temperature Firing: I. Ferrite Composition and its Effect on Sintering Behavior and Permeability

Article

Abstract

Ni-Cu-Zn ferrites of composition Ni1 − xyCu y Zn x Fe2O4 with 0.4 ≰ x ≰ 0.6 and 0 ≰ y ≰ 0.25 were prepared by standard ceramic processing routes. The density of samples sintered at 900^∘C increases with copper concentration y. Dilatometry reveals a significant decrease of the temperature of maximum shrinkage with y. The permeability has maximum values of μ = 500–1000 for x = 0.6. The Curie temperature is sensitive to composition and changes form about 150^∘C for x = 0.6 to T c > 250^∘C for x = 0.4, almost independent on the Cu-content. A small iron deficiency in Ni0.20Cu0.20Zn0.60 + zFe2 − zO4 − (z/2) with 0 ≰ z ≰ 0.06 significantly enhances the density of samples sintered at 900^∘C. The maximum shrinkage rate is shifted to T < 900C. These compositions are therefore appropriate for application in low temperature co-firing processes. The permeability is reduced with z, hence a small z = 0.02 seems to be the optimum ferrite composition for high sintering activity and permeability.

Keywords

soft ferrites Ni-Cu-Zn ferrites high permeability powder morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Nomura and A. Nakano, in Proceedings of the Sixth International Conference on Ferrites (ICF6), Tokyo, 1198 (1992).Google Scholar
  2. 2.
    T. Nakamura and Y. Okano, J. Phys. IV France, 7, C1-91 (1997).Google Scholar
  3. 3.
    K. Yasuda, Y. Mochizuki, and M. Takaya, in Proceedings of the Eight International Conference of Ferrites (ICF8), Kyoto, 1162 (2000).Google Scholar
  4. 4.
    J.H. Nam, H.H. Jung, J.Y. Shin, and J.H. Oh, IEEE Trans. Magn., 31, 3985 (1995).CrossRefGoogle Scholar
  5. 5.
    S.C. Byeon, H.J. Je, and K.S. Hong, Jpn. J. Appl. Phys., 36, 5103 (1997).CrossRefGoogle Scholar
  6. 6.
    A. Nakano and T. Nomura, Ceram. Transactions, 97, 285 (1999).Google Scholar
  7. 7.
    K.O. Low and F.R. Sale, J. Magn. Magn. Mater., 256, 221 (2003).CrossRefGoogle Scholar
  8. 8.
    S.R. Murthy, J. Mater. Sci. Lett., 21, 657 (2002).CrossRefGoogle Scholar
  9. 9.
    J.M. Daniels and A. Rosencwaig, Canad. J. Phys., 48, 381 (1970).Google Scholar
  10. 10.
    A.M. El-Sayed, Ceramics Intl., 28, 363 (2002).Google Scholar
  11. 11.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976).Google Scholar
  12. 12.
    E.W. Gorter, Philips Res. Repts., 9, 321 (1954).Google Scholar
  13. 13.
    T. Nakamura, J. Magn. Magn. Mater., 168, 285 (1997).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Fachhochschule Jena, FB WerkstofftechnikJenaGermany

Personalised recommendations