Advertisement

Journal of Electroceramics

, Volume 15, Issue 2, pp 159–166 | Cite as

The Effect of Cobalt Oxide Addition on the Conductivity of Ce0.9Gd0.1O1.95

  • Eva JudEmail author
  • Ludwig J. Gauckler
Article

Abstract

The conductivity of cobalt oxide doped Ce0.9Gd0.1O1.95 (CGO10) of various doping concentrations, sintering temperatures, dwell times, and cooling rates was investigated by 4-point DC conductivity measurements. In cobalt oxide doped CGO10, an enhanced total conductivity occuring with a low activation energy of 0.54 eV was detected below 250C in quenched samples. If the same samples were cooled down slowly, only the ionic conductivity of undoped CGO with an activation energy of 0.8 eV was found. The increased conductivity is attributed to a percolating network of an electronically conducting grain boundary phase rich in CoO, which can be retained by quenching from temperatures between 900 and 1000C.

Keywords

ceria solid solution cobalt oxide mixed ionic electronic conductivity grain boundary segregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L.J. Gauckler, Solid State Ionics, 131, 79 (2000).CrossRefGoogle Scholar
  2. 2.
    N.Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).CrossRefGoogle Scholar
  3. 3.
    M. Goedickemeier and L.J. Gauckler, J. Electrochem. Soc., 145, 414 (1998).Google Scholar
  4. 4.
    B.C.H. Steele, Solid State Ionics, 129, 95 (2000).CrossRefGoogle Scholar
  5. 5.
    D.K. Hohnke, Solid State Ionics, 5, 531 (1981).CrossRefGoogle Scholar
  6. 6.
    A. Overs and I. Riess, J. Am. Ceram. Soc., 65, 606 (1982).Google Scholar
  7. 7.
    J. Faber, C. Geoffroy, A. Roux, A. Sylvestre, and P. Abelard, Appl. Phys. A-Mater. Sci. Process., 49, 225 (1989).CrossRefGoogle Scholar
  8. 8.
    K.Q. Huang, M. Feng, and J.B. Goodenough, J. Am. Ceram. Soc., 81, 357 (1998).Google Scholar
  9. 9.
    S.R. Wang, T. Kobayashi, M. Dokiya, and T. Hashimoto, J. Electrochem. Soc., 147, 3606 (2000).CrossRefGoogle Scholar
  10. 10.
    V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques, and J.R. Frade, J. Mater. Sci., 36, 1105 (2001).CrossRefGoogle Scholar
  11. 11.
    T.S. Zhang, P. Hing, H.T. Huang, and J. Kilner, Solid State Ionics, 148, 567 (2002).CrossRefGoogle Scholar
  12. 12.
    J. Van herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, Solid State Ionics., 86–88, 1255 (1996).CrossRefGoogle Scholar
  13. 13.
    P.L. Chen and I.W. Chen, J. Am. Ceram. Soc., 79, 1793 (1996).CrossRefGoogle Scholar
  14. 14.
    P.L. Chen and I.W. Chen, J. Am. Ceram. Soc., 79, 3129 (1996).Google Scholar
  15. 15.
    C. Kleinlogel and L.J. Gauckler, Solid State Ionics, 135, 567 (2000).CrossRefGoogle Scholar
  16. 16.
    G.S. Lewis, A. Atkinson, and B.C.H. Steele, in Fourth European Solid Oxide Fuel Cell Forum, edited by U. Bossel (Oberrohrdorf, Switzerland, 2000), p. 773.Google Scholar
  17. 17.
    C. Kleinlogel and L.J. Gauckler, Advanced Materials, 13, 1081 (2001).CrossRefGoogle Scholar
  18. 18.
    G.S. Lewis, A. Atkinson, B.C.H. Steele, and J. Drennan, Solid State Ionics, 152, 567 (2002).CrossRefGoogle Scholar
  19. 19.
    D.P. Fagg, J.C.C. Abrantes, D. Perez-Coll, P. Nunez, V.V. Kharton, and J.R. Frade, Electrochim. Acta, 48, 1023 (2003).CrossRefGoogle Scholar
  20. 20.
    E. Jud, C.B. Huwiler and L.J. Gauckler, J. Am. Ceram. Soc. (in press).Google Scholar
  21. 21.
    E. Jud, C.B. Huwiler, and L.J. Gauckler, submitted to J. Am. Cer. Soc.Google Scholar
  22. 22.
    J. Luo, H. Wang, and Y.-M. Chiang, J. Am. Ceram. Soc., 82, 916 (1999).Google Scholar
  23. 23.
    M.I. Mendelson, J. Am. Ceram. Soc., 52, 443 (1969).Google Scholar
  24. 24.
    B. Hattendorf, C. Latkoczy, D. Gunther, Analytical Chemistry, 75, 341A (2003).CrossRefPubMedGoogle Scholar
  25. 25.
    R. Gerhardt and A.S. Nowick, J. Am. Ceram. Soc., 69, 641 (1986).CrossRefGoogle Scholar
  26. 26.
    X.D. Zhou, W. Huebner, I. Kosacki, and H.U. Anderson, J. Am. Ceram. Soc., 85, 1757 (2002).Google Scholar
  27. 27.
    E. Jud and L.J. Gauckler, J. Electroceram., 14, 247 (2005).CrossRefGoogle Scholar
  28. 28.
    C.M. Kleinlogel and L.J. Gauckler, J. Electroceram., 5, 231 (2000).CrossRefGoogle Scholar
  29. 29.
    K. Mocala, A. Navrotsky, and D.M. Sherman, Phys. Chem. Miner., 19, 88 (1992).CrossRefGoogle Scholar
  30. 30.
    E. Jud and L.J. Gauckler, submitted to J. Electroceram.Google Scholar
  31. 31.
    M. Chen, B. Hallstedt, N.A. Grundy, and L.J. Gauckler, J. Am. Ceram. Soc., 86, 1567 (2003).Google Scholar
  32. 32.
    N.A. Grundy, private communication (2004).Google Scholar
  33. 33.
    K. Koumoto and H. Yanagida, Jpn. J. Appl. Phys., 20, 445 (1981).Google Scholar
  34. 34.
    S. Sakamoto, M. Yoshinaka, K. Hirota, and O. Yamaguchi, J. Am. Ceram. Soc., 80, 267 (1997).Google Scholar
  35. 35.
    G.M. Christie and F.P.F. vanBerkel, Solid State Ionics, 83, 17 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of Nonmetallic Inorganic Materials, Department of MaterialsSwiss Federal Institute of Technology, ETH Zurich

Personalised recommendations