Journal of Electroceramics

, Volume 14, Issue 3, pp 205–212 | Cite as

Semi-Conductors with Mobile Ions Show a New Type of I-V Relations

  • Zvi Rosenstock
  • Irena Feldman
  • Yotam Gil
  • Ilan Riess
Article

Abstract

Semi-conductors with mobile acceptors or donors show a new type of I-V relations. This paper presents experimental results for solid state devices based on copper oxide, found to be Cu2O, which exhibit these I-V relations. The cells examined are Cu| Cu2O| In and Cu| Cu2O| Ag and similar ones tested at room temperature. The measured I-V relations are different from those reported for the same type of cells in the past, which were explained to be fixed by a Schottky barrier Cu| Cu2O. We find that the I-V relations relax over a long time which we claim is due to ion redistribution. The new I-V relations can then be explained by assuming that Cu2O is a mixed-ionic-electronic-conductor and adopting a theory developed by us in the past and modified to be applicable to the relevant defect model here. In this case the contribution of Schottky barriers is insignificant.

Keywords:

mixed-ionic-electronic-conductor MIEC I-V relations semi-conductor Schottky barrier Cu2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Riess, Solid State Ionic, 69, 43 (1994).Google Scholar
  2. 2.
    L.O. Grondahl and P.H. Geiger, J. Am. Inst. Electr. Eng., 46, 215 (1927).Google Scholar
  3. 3.
    L.O. Grondahl, Rev. Mod. Phys., 5, 141 (1933).Google Scholar
  4. 4.
    R.E. Ward, Light Metals, 7, 276 (1944).Google Scholar
  5. 5.
    I.R. Smith, Metal Cleaning and Finishing, Jan, 10 (1938).Google Scholar
  6. 6.
    I.R. Smith, Westinghouse Engineer, Aug, 85 (1943).Google Scholar
  7. 7.
    Gmelin Handbook (1963), Vol. {60}, p. 89.Google Scholar
  8. 8.
    T. Suehiro, T. Sasaki and Y. Hiratate, This Solid Films, 383, 318 (2001).Google Scholar
  9. 9.
    J. Bloem, Philips Res. Repts., 13, 167 (1958).Google Scholar
  10. 10.
    A.A. Berezin and F.L. Weichman, Solid State Commun., 37, 157 (1981).Google Scholar
  11. 11.
    L.C. Olsen, F.W. Addis and W. Miller, Sol. Cells, 7, 247 (1982–83).Google Scholar
  12. 12.
    A.E. Rakhshani, Solid State Electronics, 29, 7 (1986).Google Scholar
  13. 13.
    G.J. Wang and F.L. Weichman, Can. J. Phys., 60, 1648 (1982).Google Scholar
  14. 14.
    A.A. Berezin and F.L. Weichman, Phys. Stat. Sol. (a) 71, 265 (1982).Google Scholar
  15. 15.
    Z. Rosenstock and I. Riess, Solid State Ionics, 136/137, 921 (2000).Google Scholar
  16. 16.
    O. Porat and I. Riess, Solid State Ionics, 81, 29 (1995).Google Scholar
  17. 17.
    I. Riess, J. Rutman and Z. Rosenstock, J. Am. Ceram. Soc., 84, 2895 (2001).Google Scholar
  18. 18.
    I. Riess, J. Phys. Chem. Solids, 47, 129 (1986).Google Scholar
  19. 19.
    I. Riess, Z. Phys. Chem., 219, 1 (2005).Google Scholar
  20. 20.
    F.A. Kröger, The Chemistry of Imperfect Crystals, 2nd ed. (North-Holland Publ. Comp., 1974), p. 14.Google Scholar
  21. 21.
    I. Riess, CRC Handbook of Solid State Electrochemistry, edited by P.J. Gellings and H.J.M. Bouwmeester (CRC Press, Inc. 1997), p. 223.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Zvi Rosenstock
    • 1
    • 2
  • Irena Feldman
    • 1
  • Yotam Gil
    • 1
  • Ilan Riess
    • 1
  1. 1.Physics DepartmentTechnion – IITHaifaIsrael
  2. 2.Rafael CompanyHaifaIsrael

Personalised recommendations