Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge

Abstract

Piezoelectric actuators are at an important stage of their development into a large component market. This market pull is for dynamically driven actuators for Diesel injector valves in automobiles. Cost, yield, and reliability are important concerns for the automobile industry. A number of these concerns relate back to basic material science issues in the manufacture of the piezoelectric actuators. This paper discusses material development of the piezoelectric ceramic and new opportunities for higher temperature materials. An important consideration in developing low-fire ceramics is the flux selection for a given system, and these must be selected to limit electrode-ceramic interface reactions in both Ag/Pd and copper-metallized electrode actuators.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. Zhao, M.C. Lai, and D.L. Harrington, Prog. in Energy and Combustion Science, 25(5), 437 (1999).

  2. 2.

    P.J. Tennison and R. Rertz, J. of Engineering for Gas Turbines and Power, Transactions of the ASME Engine, 123(1), 167 (2001).

  3. 3.

    Professional Engineering, 16(1), 54 (2003).

  4. 4.

    V. Bottom, Introduction to Quartz Crystal Unit Design (Van Nostrand Reinhold Co., NY, 1982).

  5. 5.

    IEEE Standard on Piezoelectricity (American National Standards Institute, Washington, DC, 1976).

  6. 6.

    B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).

  7. 7.

    J.M. Herbert, Ferroelectrics Transducers and Sensors (Gordon Breach Science Publishers, New York, 1982).

  8. 8.

    K. Yanagiwawa, H. Kanai, and Y. Yamashita, Jap. J. Appl. Phys., 34, 536 (1995).

  9. 9.

    H. Ochi, J. Am. Ceram. Soc., 48, 630 (1965).

  10. 10.

    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, and S.E. Park, Jap. J. Appl. Phys., 40(1), 599 (2001).

  11. 11.

    R.E. Eitel, C.A. Randall, and T.R. Shrout, Jap. J. Appl. Phys., 41(49), 2099 (2002).

  12. 12.

    S.J. Zhang, C.A. Randall, and T.R. Shrout, Appl. Phys. Lett., 83, 3150 (2003).

  13. 13.

    T. Song, R.E. Eitel, T.R. Shrout, and W. Hackenberger, Jap. J. Appl. Phys., 42, 5101 (2003).

  14. 14.

    C.A. Randall, R.E. Eitel, T.R. Shrout, and I.M. Reaney, J. Appl. Phys., 93(11), 9271 (2003).

  15. 15.

    C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, and I.M. Reaney, J. Appl. Phys., 95(17), 3633 (2004).

  16. 16.

    C.A. Randall, R.E. Eitel, C. Stringer, T.H. Song, S.J. Zhang, and T.R. Shrout, Piezoelectric Single Crystals and Their Applications, edited by S. Trolier-McKinstry, L.E. Cross, and Y. Yamashita (Published Privately, University Park, PA, 2004) pp. 346–365.

  17. 17.

    H. Thomann, Zeitshcrift für Angewandte Physik, 20, 554 (1966).

  18. 18.

    F. Kulscar, J. Am. Ceram. Soc., 42(7), 343 (1959).

  19. 19.

    I. Ueda, Jap. J. Appl. Phys., 11(4), 450 (1972).

  20. 20.

    G.H. Haertling, J. Am. Ceram. Soc., 50, 329 (1967).

  21. 21.

    K. Carl and K.H. Hardtl, Phys. Sol. Stat. (A), 8, 87 (1971).

  22. 22.

    L. Eyrand, P. Eyrand, and B. Claudel, J. Sol. Stat. Chem., 53, 266 (1984).

  23. 23.

    P. Gerthsen, K.H. Hardtl, and N.A. Schmidt, J. Appl. Phys., 51(2), 1131 (1980).

  24. 24.

    G. Arlt, H. Dederichs, and R. Herbert, Ferroelectrics, 74, 37 (1987).

  25. 25.

    L. Rayleigh, Philosophical Mag., 23(142), 225 (1987).

  26. 26.

    D.V. Taylor and D. Damjanovic, J. Appl. Phys., 82(4), 1973 (1997).

  27. 27.

    D. Damjanovic and M. Demartin, J. Phys. Condensed Matter, 9, 4943 (1997).

  28. 28.

    D.A. Hall, J. Mat. Science, 36, 4575 (2001).

  29. 29.

    D. Damjanovic and G. Robert, Piezoelectric Materials in Devices, edited by N. Setter, (Switzerland), pp. 353–388.

  30. 30.

    L.J. Bowen, T.R. Shrout, W.A. Schulze, and J.V. Biggers, Ferroelectrics, 27, 59 (1980).

  31. 31.

    S. Takahashi, A. Ochi, M. Yonezawa, T. Yano, T. Hamatsuki, and I. Fukui, Ferroelectrics, 50, 181 (1983).

  32. 32.

    K. Uchino, Acta Mater., 46(1), 3745 (1998).

  33. 33.

    K. Lubitz, C. Schuh, T. Steinkopff, and A. Wolff, Piezoelectric Materials in Devices, edited by N. Setter (Switzerland), pp. 183–194.

  34. 34.

    S.F. Wang, J.P. Dougherty, W. Huebner, and J.G. Pepin, J. Am. Ceram. Soc., 77(12), 3051 (1994).

  35. 35.

    P. Groen, American Ceramic Society Meeting (American Ceramic Society, Cocoa Beach, 1993).

  36. 36.

    C.A. Randall, A. Kelnberger, T. Shrout (in progress).

  37. 37.

    Y.M. Chiang, D. Birnie III and W.D. Kingery, Physical Ceramics} (J. Wiley {& Sons, Inc., New York, Cincinnati, Toronto, Brisbane, Singapore, 1996).

  38. 38.

    M. Kondo and K. Kurihara, J. Am. Ceram. Soc., 84(11), 2469 (2001).

  39. 39.

    R.B. Atkin, R.L. Homan, and R.M. Fulrath, J. Am. Ceram. Soc., 54, 113 (1971).

  40. 40.

    A.I. Kingon and J.B. Clark, J. Am. Ceram. Soc., 66(4), 256 (1983).

  41. 41.

    K. Murakami, D. Mabuchi, T. Kurita, Y. Niwa, and S. Kaneko, Jap. J. Phys., 35, 5188 (1996).

  42. 42.

    X.X. Wang, K. Murakami, O. Sugiyama, and S. Kaneko, J. European Ceram. Soc., 21, 1367 (2001).

  43. 43.

    D.E. Wittmer and R.C. Buchanan, J. Am. Ceram. Soc., 64, 485 (1981).

  44. 44.

    X. Wang, P. Lu, and W. Xue, in Proceedings of Sixth International Symposium on Applications of Ferroelectrics (ISAF, 1992) USA, pp. 585–587.

  45. 45.

    C.H. Wang and L. Wu, Jap. J. Appl. Phys., 32(7), 3204 (1993).

  46. 46.

    T. Hayashi, T. Inoue, and Y. Akiyama, J. European Ceram. Soc., 29, 999 (1999).

  47. 47.

    A.K. Saha, D. Kumar, O. Parkash, A. Sen, and H.S. Maiti, Mat. Res. Bull., 38, 1165 (2003).

  48. 48.

    C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, and T.R. Shrout, J. Mat. Res., 8(4), 880 (1993).

  49. 49.

    G. Helke, S. Seifert, and S.-J. Cho, J. European Ceramic Soc., 19, 1265 (1999).

  50. 50.

    C.A. Randall, A.D. Hilton, D.J. Barber, and T.R. Shrout, J. Mat. Res., 8(4), 880 (1993).

  51. 51.

    K. Nagata and J. Thougrueng, Jap. J. Appl. Phys., 37(9B), 5306 (1998).

  52. 52.

    J.C. Liu and J.Y. Chan, Mat. Chem. and Physics, 43, 256 (1996).

  53. 53.

    H. Kanai, O. Furukawa, S. Nakamura, and Y. Yamashita, J. Am. Ceramics Soc., 76(2), 454 (1993).

  54. 54.

    T. Takeuchi, T. Tani, and Y. Saito, Jap. J. Appl. Phys. Part 1, 9B, 5553 (1999).

  55. 55.

    T. Tani, J. Kor. Phys. Soc., 32, S1217 (1998).

Download references

Author information

Correspondence to R. E. Eitel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Randall, C.A., Kelnberger, A., Yang, G.Y. et al. High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge. J Electroceram 14, 177–191 (2005). https://doi.org/10.1007/s10832-005-0956-5

Download citation

Keywords:

  • piezoelectrics
  • electrode interface
  • multilayers
  • actuators
  • copper
  • Ag-Pd