Advertisement

Journal of Electroceramics

, Volume 13, Issue 1–3, pp 733–738 | Cite as

Poisoning of Temperature Independent Resistive Oxygen Sensors by Sulfur Dioxide

  • Frank Rettig
  • Ralf MoosEmail author
  • Carsten Plog
Article

Abstract

Sulfur dioxide strongly affects temperature independent resistive oxygen sensors of SrTi1-xFe x O3-δ. Time dependent sensor deterioration was investigated for lanthanum doped SrTi0.65Fe0.35O3-δ (STF35). Parameters were sulfur dioxide concentration, oxygen partial pressure, temperature, and sensor morphology. The sensor poisoning consists of two steps. At lower temperatures sulfur dioxide adsorption and sulfate ion formation at the grain surface is suggested. At higher temperatures the material decomposes into SrSO4, iron depleted STF35, and Fe2TiO5.

Keywords

exhaust gas sensor resistive oxygen sensor sulfur poisoning titanates perovskites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.Y. Tien, H.L. Stadler, E.F. Gibbons, and P.J. Zacmanidis, Ceram. Bull., 54, 280 (1975).Google Scholar
  2. A. Takami, Ceram. Bull., 67, 1956 (1988).Google Scholar
  3. J. Gerblinger and H. Meixner, J. Appl. Phys., 67, 7453 (1990).Google Scholar
  4. J. Gerblinger, M. Hauser, and H. Meixner, J. Am. Ceram. Soc., 78, 1451 (1995).Google Scholar
  5. T.S. Stefanik and H.L. Tuller, J. Eur. Ceram. Soc., 21, 1967 (2001).Google Scholar
  6. N. Izu, W. Shin, N. Murayama, and S. Kanzaki, Sensors and Actuators B, 93, 449 (2003).Google Scholar
  7. P.T. Moseley and D.E. Williams, Polyhedron, 8, 1615 (1989).Google Scholar
  8. D.E. Williams, B.C. Tofield, P. McGeehin, and Oxygen Sensors, European Patent Specification, EP 0062994 (1982).Google Scholar
  9. R. Moos, W. Menesklou, H.-J. Schreiner, and K.H. Härdtl, Sensors and Actuators B, 67, 178 (2000).Google Scholar
  10. R. Moos, F. Rettig, and C. Plog, Sensors and Actuators B, 93, 42 (2003).Google Scholar
  11. H. Meixner, S. Kornely, D. Hahn, H. Leiderer, B. Lemire, and B. Hacker, Gas Sensor, United States Patent Specification, US 6,101,865 (1995)Google Scholar
  12. F. Rettig, R. Moos, and C. Plog, Sensors and Actuators B, 93, 36 (2003).Google Scholar
  13. L. Wan, “Poisoning of perovskite oxides by sulfur dioxide,” in Properties and Applications of Perovskite-Type Oxides, edited by L.G. Tejuca, and J.L.G.Fierro (Marcel Dekker Inc., New York, USA 1993) p. 145ff.Google Scholar
  14. T. Schulte, R. Waser, E.W.J. Römer, H.J.M. Bouwmeester, U. Nigge, and H.-D. Wiemhöfer, J. Eur. Ceram. Soc., 21, 1971 (2001).Google Scholar
  15. F. Rettig, R. Moos, C. Plog, “Novel temperature independent resistive oxygen sensor without sulfur instability for combustion engine exhausts,” Sensor 2003, in Proceedings of the 11th International Conference, Nürnberg, Germany, 13–15. May 2003, pp. 277–282.Google Scholar
  16. A. Müller and K.H. Härdtl, Appl. Phys. A, 49, 75 (1989).Google Scholar
  17. C. Tragut and K.H. Härdtl, Sensors and Actuators B, 4, 425 (1991).Google Scholar
  18. F.A. Kröger and H.J. Vink, “Relations between the Concentrations of Imperfections in Crystalline Solids,” in, Solid State Physics, edited by F. Seitz, and D. Turnbull (Academic Press, New York, 1956), Vol. 3, pp. 307–435.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.University of Bayreuth
  2. 2.Research and TechnologyDaimlerChrysler AG

Personalised recommendations