Advertisement

Journal of Electroceramics

, Volume 13, Issue 1–3, pp 683–689 | Cite as

Characterization of Pr- and Sm-Doped Ce0.8Gd0.2O2 − δ

  • R. Torrens
  • N. M. Sammes
  • G. Tompsett
Article

Abstract

Ce0.8Gd0.2 − yPr y O2 − δ (y = 0–0.05) and Ce0.8Gd0.2 − ySm y O2 − δ (y = 0–0.05) SOFC electrolyte materials were prepared using a reverse-strike co-precipitation method. The resulting powders were characterized using X-ray diffraction, Raman spectroscopy and electrochemical methods. XRD confirmed a single fluorite phase for all compositions. Increased Pr and Sm dopant level was found to cause a shift in the peak positions to slightly higher d-spacings with respect to pure CeO2. The experimental lattice parameter was calculated using the peak positions determined from the XRD patterns. Raman spectra, for all dopant levels, showed two distinctive band features, namely a band at ca. 460 cm− 1 and a broader, weaker band at ca. 570 cm− 1. As the proportion of praseodymia dopant is increased, the oxygen vacancy band shifts to a slightly lower wavenumber and decreases in relative intensity to the F2g band. However, an anomaly occurs at the 1% dopant level; the oxygen vacancy band having a very low relative intensity. The conductivity was determined using AC—impedance spectroscopy, and it was found that for praseodymia, a maximum is observed at y = 0.015, while for samaria the maximum is observed at y = 0.01. It is also observed that the ionic conductivity for the samaria doped samples are lower than those of the praseodymia doped samples.

Keywords

Ce0.8Gd0.2−yPryO2−δ Ce0.8Gd0.2−ySmyO2−δ electrolytes X-ray diffraction Raman spectroscopy AC impedance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.C.H. Steele, in Science and Technology of Zirconia V, edited by S.P.S. Badwal, M.J. Bannister R.H.J. Hannink (Technomic Publishing Co. Inc., Pennsylvania, 1993), p. 713.Google Scholar
  2. C.C. Chen, M.M. Nasrallah, and H.U. Anderson, J. Electrochem. Soc., 140, 3555 (1993).Google Scholar
  3. H. Yahiro, K. Eguchi, and H. Arai, Solid State Ionics, 36, 71 (1989).CrossRefGoogle Scholar
  4. D.L. Maricle, T.E. Swarr, and S. Karavolis, Solid State Ionics, 52, 173 (1992).Google Scholar
  5. Z. Tianshu, P.Hing, H.Huang, and J. Kilner, Solid State Ionics, 148, 567 (2002).CrossRefGoogle Scholar
  6. T. Inoue, T. Setoguchi, K. Eguchi, and H. Arai, Solid State Ionics, 35, 285 (1989).Google Scholar
  7. L. Navarro, F. Marques, and J. Frade, J. Electrochem. Soc., 1444, 267 (1997).Google Scholar
  8. S. Lubke and H.D Wiemhofer, Solid State Ionics, 117, 229 (1999).CrossRefGoogle Scholar
  9. W. Huang, P. Shuk, and M. Greenblatt, Solid State Ionics, 113–115, 305, (1998).Google Scholar
  10. H. Yahiro, Y. Eguchi, K. Eguchi, and H. Arai, J. Appl. Electrochem., 18, 527 (1988).Google Scholar
  11. P. Shuk and M. Greenblatt, Solid State Ionics, 116, 217 (1999).Google Scholar
  12. H. Inaba and K. Naito, Solid State Ionics, 50, 100 (1983).Google Scholar
  13. B.C.H. Steele, Solid State Ionics, 129, 95 (2000).CrossRefGoogle Scholar
  14. J.R. McBride, K.C. Hass, B.D. Poindexter, and W.H. Weber, J. Appl. Phys., 76(4), 2435 (1994).CrossRefGoogle Scholar
  15. Nakajima, A. Yoshihara, and M. Ishigame, Phys. Rev. B., 50(18), 13297 (1994).Google Scholar
  16. Mineshige, T. Taji, Y. Mori, M. Kobune, S. Fujii, N. Nishi, M. Inaba, and Z. Ogumi, Solid State Ionics, 135, 481 (2000).Google Scholar
  17. J. Van Herle, T. Kawada W. Sakai H. Yokokawa M. Dokiya in Solid Oxide Fuel Cells IV, edited by M. Dokiya, H. Tagawa O. Yamamoto S.C. Singhal. (Electrochemical Society, Pennington, New Jersey, 1995), p. 1082.Google Scholar
  18. R.D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976)Google Scholar
  19. S.J. Hong and A.V. Virkar, J. Am. Ceram. Soc., 78(2) 433 (1995).Google Scholar
  20. W. Huang, P. Shuk, and M. Greenblatt, Solid State Ionics, 113–115, 305 (1998).Google Scholar
  21. Z. Tianshu, P. Hing H. Huang J. Kilner Solid State Ionics 148 567 (2002).CrossRefGoogle Scholar
  22. N. Sammes, G. Tompsett, Y. Zhang, A. Cartner, and R. Torrens, Denki Kagaku, 64, 674 (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. Torrens
    • 1
  • N. M. Sammes
    • 2
  • G. Tompsett
    • 3
  1. 1.Department of Materials and Process EngineeringUniversity of WaikatoHamiltonNew Zealand
  2. 2.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA
  3. 3.Department of Chemical EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations