Advertisement

Spatiotemporal model of tripartite synapse with perinodal astrocytic process

  • Jhunlyn LorenzoEmail author
  • Roman Vuillaume
  • Stéphane Binczak
  • Sabir Jacquir
Article
  • 43 Downloads

Abstract

Information transfer may not be limited only to synapses. Therefore, the processes and dynamics of biological neuron-astrocyte coupling and intercellular interaction within this domain are worth investigating. Existing models of tripartite synapse consider an astrocyte as a point process. Here, we extended the tripartite synapse model by considering the astrocytic processes (synaptic and perinodal) as compartments. The scattered extrinsic signals in the extracellular space and the presence of calcium stores in different astrocytic sites create local transient [Ca2+]. We investigated the Ca2+ dynamics and found that the increase in astrocytic intracellular [Ca2+] enhances the probability of neurotransmitter release. However, the period in which the extrasynaptic glutamate lingers in the extracellular space may cause excitotoxicity. We propose further biological investigation on intercellular communication, considering that unconventional sources (nonsynaptic) of glutamate may improve information processing in neuron-astrocyte networks.

Keywords

Biological model Calcium dynamics Compartmentalization Extrasynaptic transmission Perinodal astrocytic process Plasticity Tripartite-synapse 

Notes

Acknowledgements

The authors would also like to acknowledge Shivendra G. Tewari and Kaushik Kumar Majumdar for sharing the Matlab code essential for this study.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

10827_2019_734_MOESM1_ESM.m (1 kb)
(M 1014 bytes)
10827_2019_734_MOESM2_ESM.md (0 kb)
(MD 329 bytes)
10827_2019_734_MOESM3_ESM.m (1 kb)
(M 1.27 KB)
10827_2019_734_MOESM4_ESM.m (1 kb)
(M 958 bytes)
10827_2019_734_MOESM5_ESM.m (1 kb)
(M 888 bytes)
10827_2019_734_MOESM6_ESM.m (4 kb)
(M 3.62 KB)

References

  1. Abbracchio, M.P., Burnstock, G., Verkhratsky, A., Zimmermann, H. (2009). Purinergic signalling in the nervous system: an overview. Trends in Neurosciences, 32(1), 19–29.PubMedCrossRefGoogle Scholar
  2. Amiri, M., Hosseinmardi, N., Bahrami, F., Janahmadi, M. (2013). Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. Journal of Computational Neuroscience, 34(3), 489–504.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arancibia-Carcamo, I.L., Ford, M.C., Cossell, L., Ishida, K., Tohyama, K., Attwell, D. (2017). Node of ranvier length as a potential regulator of myelinated axon conduction speed. Elife, 6, e23,329.CrossRefGoogle Scholar
  4. Ashhad, S., & Narayanan, R. (2018). Stores, channels, glue, and trees: active glial and active dendritic physiology. Molecular Neurobiology, 1–22.Google Scholar
  5. Babbs, C.F., & Shi, R. (2013). Subtle paranodal injury slows impulse conduction in a mathematical model of myelinated axons. PLoS One, 8(7), e67,767.CrossRefGoogle Scholar
  6. Barros, M, & Dey, S. (2018). Feed-forward and feedback control in astrocytes for ca2+-based molecular communications nanonetworks. IEEE/ACM Transactions on Computational Biology and Bioinformatics.Google Scholar
  7. Bazargani, N., & Attwell, D. (2016). Astrocyte calcium signaling: the third wave. Nature Neuroscience, 19 (2), 182.PubMedCrossRefGoogle Scholar
  8. Bezzi, P., & Volterra, A. (2014). Imaging exocytosis and recycling of synaptic-like microvesicles in astrocytes. Cold Spring Harbor Protocols, 2014(5), pdb–prot081,711.PubMedGoogle Scholar
  9. Bogatov, N., Grigoryan, L., Ponetaeva, E., Sinisyn, A. (2014). Calculation of action potential propagation in nerve fiber. Progress in Biophysics and Molecular Biology, 114(3), 170–174.PubMedCrossRefGoogle Scholar
  10. Bucher, D., & Goaillard, J.M. (2011). Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Progress in Neurobiology, 94(4), 307–346.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bushong, E.A., Martone, M.E., Jones, Y.Z., Ellisman, M.H. (2002). Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains. Journal of Neuroscience, 22(1), 183–192.PubMedCrossRefGoogle Scholar
  12. Bushong, E.A., Martone, M.E., Ellisman, M.H. (2004). Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. International Journal of Developmental Neuroscience, 22(2), 73–86.PubMedCrossRefGoogle Scholar
  13. Butt, A.M. (2011). Atp: a ubiquitous gliotransmitter integrating neuron–glial networks. In Seminars in cell & developmental biology, (Vol. 22 pp. 205–213): Elsevier.Google Scholar
  14. Chan, S.C., Mok, S.Y., Ng, D.W.K., Goh, S.Y. (2017). The role of neuron–glia interactions in the emergence of ultra-slow oscillations. Biological Cybernetics, 111(5–6), 459–472.PubMedCrossRefGoogle Scholar
  15. Choi, M., Ahn, S., Yang, E.J., Kim, H., Chong, Y.H., Kim, H.S. (2016). Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Molecular Brain, 9(1), 72.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cinciute, S. (2019). Translating the hemodynamic response: why focused interdisciplinary integration should matter for the future of functional neuroimaging. PeerJ, 7, e6621.PubMedPubMedCentralCrossRefGoogle Scholar
  17. de Juan-Sanz, J., Holt, G.T., Schreiter, E.R., de Juan, F., Kim, D.S., Ryan, T.A. (2017). Axonal endoplasmic reticulum ca 2+ content controls release probability in cns nerve terminals. Neuron, 93(4), 867–881.PubMedPubMedCentralCrossRefGoogle Scholar
  18. De Pittà, M, & Brunel, N. (2016). Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plasticity, 2016.Google Scholar
  19. De Pittà, M, Brunel, N., Volterra, A. (2016). Astrocytes: orchestrating synaptic plasticity? Neuroscience, 323, 43–61.PubMedCrossRefGoogle Scholar
  20. Debanne, D, & Rama, S. (2011). Astrocytes shape axonal signaling. Science of Signal, 4(162), pe11–pe11.CrossRefGoogle Scholar
  21. Del-Bel, E., & De-Miguel, F.F. (2018). Extrasynaptic neurotransmission mediated by exocytosis and diffusive release of transmitter substances. Frontiers in Synaptic Neuroscience, 10.Google Scholar
  22. Deplanque, D. (2009). Maladie d’alzheimer: dualité des effets physiologiques et pathologiques du glutamate. La Lettre du pharmacologue Supplé,ment, 23(4), 13–22.Google Scholar
  23. Ding, X., Zhang, X., Ji, L. (2018). Contribution of calcium fluxes to astrocyte spontaneous calcium oscillations in deterministic and stochastic models. Applied Mathematical Modelling, 55, 371–382.CrossRefGoogle Scholar
  24. Durkee, C.A., & Araque, A. (2018). Diversity and specificity of astrocyte-neuron communication. Neuroscience.Google Scholar
  25. Dutta, D.J., Woo, D.H., Lee, P.R., Pajevic, S., Bukalo, O., Huffman, W.C., Wake, H., Basser, P.J., SheikhBahaei, S., Lazarevic, V., et al. (2018). Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proceedings of the National Academy of Sciences, 115(46), 11,832–11,837.CrossRefGoogle Scholar
  26. English, D.F., McKenzie, S., Evans, T., Kim, K., Yoon, E., Buzsáki, G. (2017). Pyramidal cell-interneuron circuit architecture and dynamics in hippocampal networks. Neuron, 96(2), 505–520.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Evans, R., & Blackwell, K. (2015). Calcium: amplitude, duration, or location? The Biological Bulletin, 228 (1), 75–83.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fiacco, T.A., & McCarthy, K.D. (2018). Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. Journal of Neuroscience, 38(1), 3–13.PubMedCrossRefGoogle Scholar
  29. Fletcher, A. (2016). Nerve cell function and synaptic mechanisms. Anaesthesia & Intensive Care Medicine, 17 (4), 199–203.CrossRefGoogle Scholar
  30. Ford, M.C., Alexandrova, O., Cossell, L., Stange-Marten, A., Sinclair, J., Kopp-Scheinpflug, C., Pecka, M., Attwell, D., Grothe, B. (2015). Tuning of ranvier node and internode properties in myelinated axons to adjust action potential timing. Nature Communications, 6, 8073.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Freeman, S.A., Desmazieres, A., Fricker, D., Lubetzki, C., Sol-Foulon, N. (2016). Mechanisms of sodium channel clustering and its influence on axonal impulse conduction. Cellular and Molecular Life Sciences, 73 (4), 723–735.PubMedCrossRefGoogle Scholar
  32. Genç, Ö., Dickman, D.K., Ma, W., Tong, A., Fetter, R.D., Davis, G.W. (2017). Mctp is an er-resident calcium sensor that stabilizes synaptic transmission and homeostatic plasticity. Elife, 6, e22,904.CrossRefGoogle Scholar
  33. Gordleeva, S.Y., Stasenko, S.V., Semyanov, A.V., Dityatev, A.E., Kazantsev, V.B. (2012). Bi-directional astrocytic regulation of neuronal activity within a network. Frontiers in Computational Neuroscience, 6, 92.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gordleeva, S.Y., Lebedev, S., Rumyantseva, M., Kazantsev, V.B. (2018). Astrocyte as a detector of synchronous events of a neural network. JETP Letters, 107(7), 440–445.CrossRefGoogle Scholar
  35. Graupner, M., & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Frontiers in Computational Neuroscience, 4, 136.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guerra-Gomes, S., Sousa, N., Pinto, L., Oliveira, J.F. (2018). Functional roles of astrocyte calcium elevations: from synapses to behavior. Frontiers in Cellular Neuroscience, 11, 427.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gulledge, A.T., & Bravo, J.J. (2016). Neuron morphology influences axon initial segment plasticity. eNeuro, ENEURO–0085.Google Scholar
  38. Guo, Y., Liu, Z., Yk, Chen, Chai, Z., Zhou, C., Zhang, Y. (2017). Neurons with multiple axons have functional axon initial segments. Neuroscience Bulletin, 33(6), 641–652.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Halassa, M.M., Fellin, T., Takano, H., Dong, J.H., Haydon, P.G. (2007). Synaptic islands defined by the territory of a single astrocyte. Journal of Neuroscience, 27(24), 6473–6477.PubMedCrossRefGoogle Scholar
  40. Handy, G., Taheri, M., White, J.A., Borisyuk, A. (2017). Mathematical investigation of ip 3-dependent calcium dynamics in astrocytes. Journal of Computational Neuroscience, 42(3), 257–273.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Heller, J.P., & Rusakov, D.A. (2017). The nanoworld of the tripartite synapse: insights from super-resolution microscopy. Frontiers in Cellular Neuroscience, 11, 374.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hennig, M.H. (2013). Theoretical models of synaptic short term plasticity. Frontiers in Computational Neuroscience, 7, 45.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hliatsevich, M.A., Bulai, P.M., Pitlik, T.N., Denisov, A.A., Cherenkevich, S.N. (2015). Design of deterministic model of signal transduction between neuronal cells. Mathematical Modelling and Analysis, 20(1), 76–93.CrossRefGoogle Scholar
  44. Hu, X., Yuan, Y., Wang, D., Su, Z. (2016). Heterogeneous astrocytes: active players in cns. Brain Research Bulletin, 125, 1–18.PubMedCrossRefGoogle Scholar
  45. Jourdain, P., Bergersen, L.H., Bhaukaurally, K., Bezzi, P., Santello, M., Domercq, M., Matute, C., Tonello, F., Gundersen, V., Volterra, A. (2007). Glutamate exocytosis from astrocytes controls synaptic strength. Nature Neuroscience, 10(3), 331.CrossRefGoogle Scholar
  46. Kelso, J.S., Dumas, G., Tognoli, E. (2013). Outline of a general theory of behavior and brain coordination. Neural Networks, 37, 120–131.PubMedCrossRefGoogle Scholar
  47. Kettenmann, H., & Verkhratsky, A. (2008). Neuroglia: the 150 years after. Trends in Neurosciences, 31(12), 653–659.CrossRefGoogle Scholar
  48. Kole, M.H. (2011). First node of ranvier facilitates high-frequency burst encoding. Neuron, 71(4), 671–682.PubMedCrossRefGoogle Scholar
  49. Kole, M.H., & Brette, R. (2018). The electrical significance of axon location diversity. Current Opinion in Neurobiology, 51, 52–59.CrossRefGoogle Scholar
  50. Kuznetsov, I, & Kuznetsov, A. (2017). How dense core vesicles are delivered to axon terminals–a review of modeling approaches. In Modeling of microscale transport in biological processes (pp. 335–352). Elsevier.Google Scholar
  51. Li, J.J., Du, M.M., Wang, R., Lei, J.Z., Wu, Y. (1650). Astrocytic gliotransmitter: diffusion dynamics and induction of information processing on tripartite synapses. International Journal of Bifurcation and Chaos, 26 (08), 138.Google Scholar
  52. London, M., Schreibman, A., Häusser, M, Larkum, M.E., Segev, I. (2002). The information efficacy of a synapse. Nature Neuroscience, 5(4), 332.PubMedCrossRefGoogle Scholar
  53. López-Caamal, F, Oyarzún, D A, Middleton, R.H., García, M.R. (2014). Spatial quantification of cytosolic ca 2+ accumulation in nonexcitable cells: an analytical study. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 11(3), 592–603.CrossRefGoogle Scholar
  54. Manninen, T., Havela, R., Linne, M.L. (2018). Computational models for calcium-mediated astrocyte functions. Frontiers in Computational Neuroscience, 12, 14.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Manninen, T., Havela, R., Linne, M.L. (2019). Computational models of astrocytes and astrocyte–neuron interactions: characterization, reproducibility, and future perspectives. In Computational glioscience (pp. 423–454): Springer.Google Scholar
  56. Mirzakhalili, E., Epureanu, B.I., Gourgou, E. (2018). A mathematical and computational model of the calcium dynamics in caenorhabditis elegans ash sensory neuron. PloS One, 13(7), e0201,302.CrossRefGoogle Scholar
  57. Mitterauer, B.J. (2014). Pathophysiology of schizophrenia based on impaired glial-neuronal interactions. Open Journal of Medical Psychology, 3(02), 126.CrossRefGoogle Scholar
  58. Modchang, C., Nadkarni, S., Bartol, T.M., Triampo, W., Sejnowski, T.J., Levine, H., Rappel, W.J. (2010). A comparison of deterministic and stochastic simulations of neuronal vesicle release models. Physical Biology, 7(2), 026,008.CrossRefGoogle Scholar
  59. Namazi, H., & Kulish, V.V. (2013). A mathematical based calculation of a myelinated segment in axons. Computers in Biology and Medicine, 43(6), 693–698.PubMedCrossRefGoogle Scholar
  60. Nazari, S., Faez, K., Amiri, M., Karami, E. (2015). A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Networks, 66, 79–90.PubMedCrossRefGoogle Scholar
  61. Nedergaard, M., & Verkhratsky, A. (2012). Artifact versus reality—how astrocytes contribute to synaptic events. Glia, 60(7), 1013–1023.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nelson, A.D., & Jenkins, P.M. (2017). Axonal membranes and their domains: assembly and function of the axon initial segment and node of ranvier. Frontiers in Cellular Neuroscience, 11, 136.PubMedPubMedCentralCrossRefGoogle Scholar
  63. of Notre Dame, U. (2004). The electrical system of the body. In Physics in medicine (pp. 224–242): Elsevier.Google Scholar
  64. Perea, G., Sur, M., Araque, A. (2014). Neuron-glia networks: integral gear of brain function. Frontiers in Cellular Neuroscience, 8, 378.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pissadaki, E.K., Sidiropoulou, K., Reczko, M., Poirazi, P. (2010). Encoding of spatio-temporal input characteristics by a ca1 pyramidal neuron model. PLoS Computational Biology, 6(12), e1001,038.CrossRefGoogle Scholar
  66. Poliak, S., & Peles, E. (2003). The local differentiation of myelinated axons at nodes of ranvier. Nature Reviews Neuroscience, 4(12), 968.PubMedCrossRefGoogle Scholar
  67. Robertson, J.M. (2013). Astrocyte domains and the three-dimensional and seamless expression of consciousness and explicit memories. Medical Hypotheses, 81(6), 1017–1024.PubMedCrossRefGoogle Scholar
  68. Rossi, D. (2015). Astrocyte physiopathology: at the crossroads of intercellular networking, inflammation and cell death. Progress in Neurobiology, 130, 86–120.PubMedCrossRefGoogle Scholar
  69. Sasaki, T. (2013). The axon as a unique computational unit in neurons. Neuroscience Research, 75(2), 83–88.PubMedCrossRefGoogle Scholar
  70. Sasaki, T., Matsuki, N., Ikegaya, Y. (2011). Action-potential modulation during axonal conduction. Science, 331(6017), 599–601.PubMedCrossRefGoogle Scholar
  71. Savtchouk, I., & Volterra, A. (2018). Gliotransmission: beyond black-and-white. Journal of Neuroscience, 38 (1), 14–25.PubMedCrossRefGoogle Scholar
  72. Semyanov, A. (2018). Spatiotemporal pattern of ca2+ activity in astrocytic network. Cell Calcium.Google Scholar
  73. Shigetomi, E., Patel, S., Khakh, B.S. (2016). Probing the complexities of astrocyte calcium signaling. Trends in Cell Biology, 26(4), 300–312.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sims, R.E., Butcher, J.B., Parri, H.R., Glazewski, S. (2015). Astrocyte and neuronal plasticity in the somatosensory system. Neural Plasticity, 2015.Google Scholar
  75. Sloan, S.A., & Barres, B.A. (2014). Looks can be deceiving: reconsidering the evidence for gliotransmission. Neuron, 84(6), 1112–1115.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sosunov, A.A., Wu, X., Tsankova, N.M., Guilfoyle, E., McKhann, G.M., Goldman, J.E. (2014). Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. Journal of Neuroscience, 34(6), 2285–2298.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Tewari, S., & Parpura, V. (2013). A possible role of astrocytes in contextual memory retrieval: an analysis obtained using a quantitative framework. Frontiers in Computational Neuroscience, 7, 145.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Tewari, S.G., & Majumdar, K.K. (2012). A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. Journal of Biological Physics, 38(3), 465–496.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Tønnesen, J, & Nägerl, U.V. (2016). Dendritic spines as tunable regulators of synaptic signals. Frontiers in Psychiatry, 7, 101.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Trueta, C., & De-Miguel, F.F. (2012). Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Frontiers in Physiology, 3, 319.PubMedCentralPubMedGoogle Scholar
  81. Ventura, R., & Harris, K.M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. Journal of Neuroscience, 19(16), 6897–6906.CrossRefGoogle Scholar
  82. Verkhratsky, A., Matteoli, M., Parpura, V., Mothet, J.P., Zorec, R. (2016). Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. The EMBO Journal, 35(3), 239–257.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Vizi, E.S., & Kiss, J.P. (1998). Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus, 8(6), 566–607.PubMedCrossRefGoogle Scholar
  84. Volterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nature Reviews Neuroscience, 6(8), 626.PubMedCrossRefGoogle Scholar
  85. Volterra, A., Liaudet, N., Savtchouk, I. (2014). Astrocyte ca 2+ signalling: an unexpected complexity. Nature Reviews Neuroscience, 15(5), 327.PubMedCrossRefGoogle Scholar
  86. Wade, J.J., McDaid, L.J., Harkin, J., Crunelli, V., Kelso, J.S. (2011). Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PloS One, 6(12), e29,445.CrossRefGoogle Scholar
  87. Wallach, G., Lallouette, J., Herzog, N., De Pittà, M, Jacob, E.B., Berry, H., Hanein, Y. (2014). Glutamate mediated astrocytic filtering of neuronal activity. PLoS Computational Biology, 10(12), e1003,964.CrossRefGoogle Scholar
  88. Woo, B., & Choi, J. (2007). Reduced model and simulation of myelinated axon using eigenfunction expansion and singular perturbation. Computers in Biology and Medicine, 37(8), 1148–1154.PubMedCrossRefGoogle Scholar
  89. Wu, Y.W., Tang, X., Arizono, M., Bannai, H., Shih, P.Y., Dembitskaya, Y., Kazantsev, V., Tanaka, M., Itohara, S., Mikoshiba, K., et al. (2014). Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity. Cell Calcium, 55(2), 119–129.PubMedCrossRefGoogle Scholar
  90. Wu, Y.W., Gordleeva, S., Tang, X., Shih, P.Y., Dembitskaya, Y., Semyanov, A. (2018). Morphological profile determines the frequency of spontaneous calcium events in astrocytic processes. Glia.Google Scholar
  91. Yamada, R., & Kuba, H. (2016). Structural and functional plasticity at the axon initial segment. Frontiers in Cellular Neuroscience, 10, 250.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ye, H., & Ng, J. (2018). Shielding effects of myelin sheath on axolemma depolarization under transverse electric field stimulation. PeerJ, 6, e6020.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zbili, M., Rama, S., Debanne, D. (2016). Dynamic control of neurotransmitter release by presynaptic potential. Frontiers in Cellular Neuroscience, 10, 278.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zhou, B., Zuo, Y.X., Jiang, R.T. (2019). Astrocyte morphology: diversity, plasticity, and role in neurological diseases. CNS Neuroscience & Therapeutics, 25(6), 665–673.CrossRefGoogle Scholar
  95. Ziskin, J.L., Nishiyama, A., Rubio, M., Fukaya, M., Bergles, D.E. (2007). Vesicular release of glutamate from unmyelinated axons in white matter. Nature Neuroscience, 10(3), 321.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire ImViA EA7535Université de BourgogneDijonFrance
  2. 2.DCEE, CEITCavite State UniversityIndangPhilippines
  3. 3.Department of Integrative and Computational Neuroscience (ICN), Paris-Saclay Institute of Neuroscience (NeuroPSI)CNRS/University Paris-SudGif sur YvetteFrance

Personalised recommendations