Journal of Computational Neuroscience

, Volume 45, Issue 3, pp 207–221 | Cite as

A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations

  • Amélie AusselEmail author
  • Laure Buhry
  • Louise Tyvaert
  • Radu Ranta


The mechanisms underlying the broad variety of oscillatory rhythms measured in the hippocampus during the sleep-wake cycle are not yet fully understood. In this article, we propose a computational model of the hippocampal formation based on a realistic topology and synaptic connectivity, and we analyze the effect of different changes on the network, namely the variation of synaptic conductances, the variations of the CAN channel conductance and the variation of inputs. By using a detailed simulation of intracerebral recordings, we show that this is able to reproduce both the theta-nested gamma oscillations that are seen in awake brains and the sharp-wave ripple complexes measured during slow-wave sleep. The results of our simulations support the idea that the functional connectivity of the hippocampus, modulated by the sleep-wake variations in Acetylcholine concentration, is a key factor in controlling its rhythms.


Hippocampal oscillations Conductance-based neurons Sleep-wake cycle Sharp-wave ripples Theta-nested gamma oscillations Acetylcholine 


Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J. (2007). The hippocampus book. Oxford: Oxford University Press.Google Scholar
  2. Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228–3233.Google Scholar
  3. Bartos, M., Vida, I., Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8(1), 45–56.PubMedGoogle Scholar
  4. Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325–340.PubMedGoogle Scholar
  5. Buzsáki, G. (2015). Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073–1188.PubMedPubMedCentralGoogle Scholar
  6. Cheng, Q., & Yakel, J. L. (2013). Presynaptic α7 nicotinic acetylcholine receptors enhance hippocampal mossy fiber glutamatergic transmission via pka activation. Journal of Neuroscience, 34(1), 124–133.Google Scholar
  7. Cosandier-Rimele, D., Badier, J., Chauvel, P., Wendling, F. (2007). A physiologically plausible spatio-temporal model for eeg signals recorded with intracerebral electrodes in human partial epilepsy. IEEE Transactions on Biomedical Engineering, 54(3), 380– 388.PubMedGoogle Scholar
  8. Couey, J. J., Witoelar, A., Zhang, S. -J., Zheng, K., Ye, J., Dunn, B., Czajkowski, R., Moser, M. -B., Moser, E. I., Roudi, Y., et al. (2013). Recurrent inhibitory circuitry as a mechanism for grid formation. Nature neuroscience, 16(3), 318–324.PubMedGoogle Scholar
  9. Debanne, D., Guerineau, N. C., Gahwiler, B. H., Thompson, S. M. (1995). Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas ca3 and ca1 of rat hippocampal slice cultures. Journal of Neurophysiology, 73(3), 1282–1294. PMID 7608771.PubMedGoogle Scholar
  10. Drever, B.D., Riedel, G., Platt, B. (2011). The cholinergic system and hippocampal plasticity. Behavioural Brain Research, 221(2), 505–514. The cholinergic system and brain function.PubMedGoogle Scholar
  11. Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680.PubMedGoogle Scholar
  12. Frazier, C. J., Rollins, Y. D., Breese, C. R., Leonard, S., Freedman, R., Dunwiddie, T. V. (1998). Acetylcholine activates an α-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. Journal of Neuroscience, 18(4), 1187–1195.PubMedGoogle Scholar
  13. Freund, T., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470.PubMedGoogle Scholar
  14. Fukai, T. (1999). Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: a model of the basal ganglia–thalamo-cortical loops. Neural Networks, 12(7–8), 975–987.PubMedGoogle Scholar
  15. Gan, J., ming Weng, S., Pernía-Andrade, A. J., Csicsvari, J., Jonas, P. (2017). Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron, 93(2), 308–314.PubMedPubMedCentralGoogle Scholar
  16. Giovannini, F., Knauer, B., Yoshida, M., Buhry, L. (2017). The can-in network: a biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus. Hippocampus, 27 (4), 450–463.PubMedGoogle Scholar
  17. Girardeau, G., & Zugaro, M. (2011). Hippocampal ripples and memory consolidation. Current Opinion in Neurobiology, 21(3), 452–459. Behavioural and cognitive neuroscience.PubMedGoogle Scholar
  18. Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383(6602), 713.PubMedGoogle Scholar
  19. Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T. F., Varga, V. (2009). Gabaergic neurons of the medial septum lead the hippocampal network during theta activity. Journal of Neuroscience, 29(25), 8094–8102.PubMedGoogle Scholar
  20. Hasselmo, M. E. (1999). Neuromodulation: acetylcholine and memory consolidation. Trends in Cognitive Sciences, 3(9), 351–359.PubMedGoogle Scholar
  21. Herreras, O., Solís, J., Herranz, A., del Río, R. M., Lerma, J. (1988). Sensory modulation of hippocampal transmission. ii. evidence for a cholinergic locus of inhibition in the schaffer-ca1 synapse. Brain Research, 461(2), 303–313.PubMedGoogle Scholar
  22. Heys, J. G., Schultheiss, N. W., Shay, C. F., Tsuno, Y., Hasselmo, M. E. (2012). Effects of acetylcholine on neuronal properties in entorhinal cortex. Frontiers in behavioral neuroscience, 6, 32.PubMedPubMedCentralGoogle Scholar
  23. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.PubMedPubMedCentralGoogle Scholar
  24. Hofmanis, J., Caspary, O., Louis-Dorr, V., Maillard, L. (2011). Automatic depth electrode localization in intracranial space. In: 4th International Conference on Bio-inspired Systems and Signal Processing, Biosignals 2011 page CDROM, Rome. Italy.Google Scholar
  25. Jinno, S., & Kosaka, T. (2010). Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. Hippocampus, 20(7), 829–840.PubMedGoogle Scholar
  26. Jones, S., & Yakel, J. L. (1997). Functional nicotinic ach receptors on interneurones in the rat hippocampus. The Journal of Physiology, 504(3), 603–610.PubMedPubMedCentralGoogle Scholar
  27. Kang, D., Ding, M., Topchiy, I., Shifflett, L., Kocsis, B. (2015). Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a granger causality analysis. Journal of Neurophysiology, 114(5), 2797–2803. PMID: 26354315.PubMedPubMedCentralGoogle Scholar
  28. Knowles, W., & Schwartzkroin, P. (1981). Local circuit synaptic interactions in hippocampal brain slices. Journal of Neuroscience, 1(3), 318–322.PubMedGoogle Scholar
  29. Larimer, P., & Strowbridge, B. W. (2008). Nonrandom local circuits in the dentate gyrus. Journal of Neuroscience, 28(47), 12212–12223.PubMedGoogle Scholar
  30. Mazzoni, A., Lindén, H., Cuntz, H., Lansner, A., Panzeri, S., Einevoll, G. T. (2015). Computing the local field potential (lfp) from integrate-and-fire network models. PLOS Computational Biology, 11(12), 1–38.Google Scholar
  31. Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., Buzsáki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. Journal of Neuroscience, 19(21), 9497–9507.PubMedGoogle Scholar
  32. O’Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the eeg theta rhythm. Hippocampus, 3(3), 317–330.PubMedGoogle Scholar
  33. Pastoll, H., Solanka, L., VanRossum, M., Nolan, M. (2013). Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron, 77(1), 141–154.PubMedGoogle Scholar
  34. Patel, J., Schomburg, E. W., Berényi, A., Fujisawa, S., Buzsáki, G. (2013). Local generation and propagation of ripples along the septotemporal axis of the hippocampus. Journal of Neuroscience, 33(43), 17029–17041.PubMedGoogle Scholar
  35. Patton, P. E., & McNaughton, B. (1995). Connection matrix of the hippocampal formation: i. the dentate gyrus. Hippocampus, 5(4), 245–286.PubMedGoogle Scholar
  36. Pettersen, K. H., Lindén, H., Dale, A. M., Einevoll, G. T. (2012). Extracellular spikes and csd. Handbook of neural activity measurement, 1, 92–135.Google Scholar
  37. Platt, B., & Riedel, G. (2011). The cholinergic system, {EEG} and sleep. Behavioural Brain Research, 221 (2), 499–504. The cholinergic system and brain function.PubMedGoogle Scholar
  38. Ropireddy, D., Scorcioni, R., Lasher, B., Buzsáki, G., Ascoli, G. A. (2011). Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different ca3 locations. Brain Structure and Function, 216(1), 1–15.PubMedGoogle Scholar
  39. Ruivo, L. M. T. -G., Baker, K. L., Conway, M. W., Kinsley, P. J., Gilmour, G., Phillips, K. G., Isaac, J. T., Lowry, J. P., Mellor, J. R. (2017). Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Reports, 18(4), 905–917.Google Scholar
  40. Sarter, M., Parikh, V., Howe, W. M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nature Reviews Neuroscience, 10, 383–390.PubMedPubMedCentralGoogle Scholar
  41. Somogyi, P., Katona, L., Klausberger, T., Lasztóczi, B., Viney, T. J. (2014). Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1635), 20120518.PubMedGoogle Scholar
  42. Stimberg, M., Goodman, D. F., Benichoux, V., Brette, R. (2014). Equation-oriented specification of neural models for simulations. Frontiers in Neuroinformatics, 8, 6.PubMedPubMedCentralGoogle Scholar
  43. Taxidis, J., Coombes, S., Mason, R., Owen, M. R. (2012). Modeling sharp wave-ripple complexes through a ca3-ca1 network model with chemical synapses. Hippocampus, 22(5), 995–1017.PubMedGoogle Scholar
  44. Tiesinga, P. H., Fellous, J. -M., José, J. V., Sejnowski, T. J. (2001). Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus, 11(3), 251–274.PubMedGoogle Scholar
  45. Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49–62.PubMedGoogle Scholar
  46. Traub, R. D., & Bibbig, A. (2000). A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon–axon gap junctions between pyramidal neurons. Journal of Neuroscience, 20(6), 2086–2093.PubMedGoogle Scholar
  47. Wang, X. -J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16(20), 6402–6413.PubMedGoogle Scholar
  48. West, M. J., & Gundersen, H. J. G. (1990). Unbiased stereological estimation of the number of neurons in the human hippocampus. The Journal of Comparative Neurology, 296(1), 1–22.PubMedGoogle Scholar
  49. Yoshida, M., Knauer, B., Jochems, A. (2012). Cholinergic modulation of the can current may adjust neural dynamics for active memory maintenance, spatial navigation and time-compressed replay. Frontiers in neural circuits, 6, 10.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Lorrain de Recherche en Informatique et ses applicationsLORIA UMR 7503, University of Lorraine-INRIA-CNRS, F-54506Vandoeuvre les NancyFrance
  2. 2.Centre de Recherche en Automatique de NancyCRAN-CNRS UMR 7039 University of LorraineVandoeuvre les NancyFrance
  3. 3.Department of NeurologyCHU de NancyNancyFrance

Personalised recommendations