Journal of Computational Neuroscience

, Volume 44, Issue 3, pp 313–339 | Cite as

The role of phase shifts of sensory inputs in walking revealed by means of phase reduction

  • Azamat Yeldesbay
  • Tibor Tóth
  • Silvia Daun


Detailed neural network models of animal locomotion are important means to understand the underlying mechanisms that control the coordinated movement of individual limbs. Daun-Gruhn and Tóth, Journal of Computational Neuroscience 31(2), 43–60 (2011) constructed an inter-segmental network model of stick insect locomotion consisting of three interconnected central pattern generators (CPGs) that are associated with the protraction-retraction movements of the front, middle and hind leg. This model could reproduce the basic locomotion coordination patterns, such as tri- and tetrapod, and the transitions between them. However, the analysis of such a system is a formidable task because of its large number of variables and parameters. In this study, we employed phase reduction and averaging theory to this large network model in order to reduce it to a system of coupled phase oscillators. This enabled us to analyze the complex behavior of the system in a reduced parameter space. In this paper, we show that the reduced model reproduces the results of the original model. By analyzing the interaction of just two coupled phase oscillators, we found that the neighboring CPGs could operate within distinct regimes, depending on the phase shift between the sensory inputs from the extremities and the phases of the individual CPGs. We demonstrate that this dependence is essential to produce different coordination patterns and the transition between them. Additionally, applying averaging theory to the system of all three phase oscillators, we calculate the stable fixed points - they correspond to stable tripod or tetrapod coordination patterns and identify two ways of transition between them.


Central pattern generators Inter-segmental coordination Phase oscillator model Stepping patterns Transition Speed control 6-legged locomotion 



We would like to thank Philip Holmes for useful discussions in the course of the work. This research was supported by Deutsche Forschungsgemeinschaft (DFG) grants GR3690/2-1, GR3690/4-1, DA1953/5-2, and by BMBF-NSF grant 01GQ1412.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest


  1. Aminzare, Z., Srivastava, V., Holmes P. (2018). Gait Transitions in a Phase Oscillator Model of an Insect Central Pattern Generator. SIAM Journal on Applied Dynamical Systems, 17(1), 626–671. Scholar
  2. Ayali, A., Couzin-Fuchs, E., David, I., Gal, O., Holmes, P., Knebel, D. (2015). Sensory feedback in cockroach locomotion: current knowledge and open questions. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 201 (9), 841–850. Scholar
  3. Borgmann, A., Scharstein, H., Büschges, A. (2007). Intersegmental coordination: influence of a single walking leg on the neighboring segments in the stick insect walking system. Journal of Neurophysiology, 98(3), 1685–1696. Scholar
  4. Borgmann, A., Hooper, S.L., Büschges, A. (2009). Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. The Journal of Neuroscience, 29(9), 2972–2983. Scholar
  5. Borgmann, A., Tóth, T.I., Gruhn, M., Daun-Gruhn, S., Büschges, A. (2011). Dominance of local sensory signals over inter-segmental effects in a motor system: experiments. Biological Cybernetics, 105(5-6), 399–411. Scholar
  6. Brown, T.G. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. The Journal of Physiology, 48(1), 18–46. Scholar
  7. Büschges, A. (2005). Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol, 93(3), 1127–1135.[pii]10.1152/jn.00615.2004.CrossRefPubMedGoogle Scholar
  8. Büschges, A., & Gruhn, M. (2007). Mechanosensory Feedback in Walking: From Joint Control to Locomotor Patterns, vol 34.
  9. Calabrese, R.L., Hill, A.A.V., Van Hooser, S.D. (2003) In Arbib, M.A. (Ed.), Half-center oscillators underlying rhythmic movements, 2nd edn., (pp. 507–510). Cambridge: A Bradford Book.Google Scholar
  10. Clewley, R. (2011). Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation: A dominant scale and hybrid dynamical systems analysis. Journal of Biological Physics, 37(3), 285–306. Scholar
  11. Cohen, A.H., Holmes, P.J., Rand, R.H. (1982). The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model. Journal of Mathematical Biology, 13(3), 345–369. Scholar
  12. Collins, J.J., & Stewart, I. (1993). Hexapodal gaits and coupled nonlinear oscillator models. Biological Cybernetics, 68(4), 287–298. Scholar
  13. Couzin-Fuchs, E., Kiemel, T., Gal, O., Ayali, A., Holmes, P. (2015). Intersegmental coupling and recovery from perturbations in freely running cockroaches. Journal of Experimental Biology, 218(2), 285–297. Scholar
  14. Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods Trends in Neurosciences, 13(1), 15–21. Scholar
  15. Cruse, H. (2002). The functional sense of central oscillations in walking. Biological Cybernetics, 86(4), 271–280. Scholar
  16. Daun, S., Rubin, J.E., Rybak, I.A. (2009). Control of oscillation periods and phase durations in half-center central pattern generators: A comparative mechanistic analysis. Journal of Computational Neuroscience, 27(1), 3–36. Scholar
  17. Daun-Gruhn, S. (2011). A mathematical modeling study of inter-segmental coordination during stick insect walking. Journal of Computational Neuroscience, 30(2), 255–278. Scholar
  18. Daun-Gruhn, S., & Tóth, T.I. (2011). An inter-segmental network model and its use in elucidating gait-switches in the stick insect. Journal of Computational Neuroscience, 31(1), 43–60. Scholar
  19. Daun-Gruhn, S., Tóth, T.I., Borgmann, A. (2011). Dominance of local sensory signals over inter-segmental effects in a motor system: Modeling studies. Biological Cybernetics, 105 (5-6), 413–426. Scholar
  20. Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210(4469), 492–498. Scholar
  21. Doedel, E.J., Fairgrieve, T.F., Sandstede, B., Champneys, A.R., Kuznetsov, Y.A., Wang, X. (2007). Auto-07p: Continuation and bifurcation software for ordinary differential equations. Tech. rep., California Institute of Technology, Pasadena CA 91125.
  22. Dürr, V., Schmitz, J., Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: Linking biology and technical application. Arthropod Structure and Development, 33(3), 237–250. Scholar
  23. Ekeberg, Ö., Blu̇mel, M., Büschges, A. (2004). Dynamic simulation of insect walking. Arthropod Structure and Development, 33(3), 287–300. Scholar
  24. Ermentrout, B. (1996). Type I membrances, phase resetting curves, and synchrony. Neural Computation, 8 (5), 979–1001. Scholar
  25. Grabowska, M., Godlewska, E., Schmidt, J., Daun-Gruhn, S. (2012). Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects. Journal of Experimental Biology, 215(24), 4255–4266. Scholar
  26. Grabowska, M., Tóth, T.I., Smarandache-Wellmann, C., Daun-Gruhn, S. (2015). A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans. Journal of Computational Neuroscience, 38(3), 601–616. Scholar
  27. Graham, D. (1972). A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). Journal of Comparative Physiology, 81(1), 23–52. Scholar
  28. Graham, D. (1985). Pattern and Control of Walking in Insects. Advances in Insect Physiology, 18, 31–140. Scholar
  29. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Applied Mathematical Sciences. Berlin: Springer.CrossRefGoogle Scholar
  30. Holmes, P., Full, R.J., Koditschek, D., Guckenheimer, J. (2006). The Dynamics of Legged Locomotion: Models, Analyses, and Challenges. SIAM Review, 48(2), 207–304. Scholar
  31. Hoppensteadt, F.C., & Izhikevich, E.M. (1997). Weakly connected neural networks, Applied Mathematical Sciences, vol 126. Berlin: Springer. Scholar
  32. Izhikevich, E.M. (2000). Phase Equations for Relaxation Oscillators. SIAM Journal on Applied Mathematics, 60(5), 1789–1804. Scholar
  33. Izhikevich, E.M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. 1. Cambridge: The MIT Press.Google Scholar
  34. Jones, S.R., Mulloney, B., Kaper, T.J., Kopell, N. (2003). Coordination of cellular pattern-generating circuits that control limb movements: the sources of stable differences in intersegmental phases. The Journal of neuroscience, 23(8), 3457–3468.CrossRefPubMedGoogle Scholar
  35. Katz, P.S. (2016). Evolution of central pattern generators and rhythmic behaviours. Philosophical transactions of the Royal Society of London Series B, Biological Sciences, 371(1685), 20150,057. Scholar
  36. Kukillaya, R.P., & Holmes, P. (2009). A model for insect locomotion in the horizontal plane: Feedforward activation of fast muscles, stability, and robustness. Journal of Theoretical Biology, 261(2), 210–226. Scholar
  37. Kukillaya, R.P., & Holmes, P.J. (2007). A hexapedal jointed-leg model for insect locomotion in the horizontal plane. Biological Cybernetics, 97(5-6), 379–395. Scholar
  38. Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence, vol 19. Berlin: Springer Berlin Heidelberg. Scholar
  39. Malkin, I.G. (1949). Methods of Poincar’e and Lyapunov in the theory of non-linear oscillations Moscow:. Moscow:Gostexizdat., [in Russian: Metodi Puankare i Liapunova v teorii nelineinix kolebanii].Google Scholar
  40. Malkin, I.G. (1959). Some problems in nonlinear oscillation theory. Moscow: Gostexizdat., [in Russian: Nekotorye zadachi teorii nelineinix kolebanii].Google Scholar
  41. Massarelli, N., Clapp, G., Hoffman, K., Kiemel, T. (2016). Entrainment Ranges for Chains of Forced Neural and Phase Oscillators. The Journal of Mathematical Neuroscience, 6 (1), 6. Scholar
  42. Mendes, C.S., Bartos, I., Akay, T., Mȧrka, S., Mann, R.S. (2013). Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife, 2013(2), e00,231. Scholar
  43. Proctor, J., & Holmes, P. (2010). Reflexes and preflexes: On the role of sensory feedback on rhythmic patterns in insect locomotion. Biological Cybernetics, 102(6), 513–531. Scholar
  44. Proctor, J., Kukillaya, R.P., Holmes, P. (2010). A phase-reduced neuro-mechanical model for insect locomotion: feed-forward stability and proprioceptive feedback. Philosophical transactions Series A, Mathematical, Physical, and Engineering Sciences, 368(1930), 5087–5104. Scholar
  45. Roberts, A., & Roberts, L.B. (1983). Neural origins of rhythmic movements. Cambridge: Cambridge University Press.Google Scholar
  46. Schilling, M., Hoinville, T., Schmitz, J., Cruse, H. (2013). Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics, 107(4), 397–419. Scholar
  47. Skinner, F.K., Kopell, N., Mulloney, B. (1997). How does the crayfish swimmeret system work? Insights from nearest-neighbor coupled oscillator models. Journal of Computational Neuroscience, 4(2), 151–160. Scholar
  48. Somers, D., & Kopell, N. (1993). Rapid synchronization through fast threshold modulation. Biological Cybernetics, 68(5), 393–407. Scholar
  49. Somers, D., & Kopell, N. (1995). Waves and synchrony in networks of oscillators of relaxation and non-relaxation type. Physica D: Nonlinear Phenomena, 89(1-2), 169–183. Scholar
  50. Tóth, T.I., & Daun-Gruhn, S. (2016). A three-leg model producing tetrapod and tripod coordination patterns of ipsilateral legs in the stick insect. Journal of Neurophysiology, 115(2), 887–906. Scholar
  51. Tóth, T.I., Grabowska, M., Schmidt, J., Büschges, A., Daun-Gruhn, S. (2013a). A neuro-mechanical model explaining the physiological role of fast and slow muscle fibres at stop and start of stepping of an insect leg. PLOS ONE, 8(11), e78,246.
  52. Tóth, T.I., Schmidt, J., Büschges, A., Daun-Gruhn, S. (2013b). A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system. PLOS ONE, 8(11), e78,247.
  53. Tóth, T.I., Grabowska, M., Rosjat, N., Hellekes, K., Borgmann, A., Daun-Gruhn, S. (2015). Investigating inter-segmental connections between thoracic ganglia in the stick insect by means of experimental and simulated phase response curves. Biological Cybernetics, 109, 349–362. Scholar
  54. Von Twickel, A., Hild, M., Siedel, T., Patel, V., Pasemann F. (2012). Neural control of a modular multi-legged walking machine: Simulation and hardware. Robotics and Autonomous Systems, 60(2), 227–241. Scholar
  55. Wang, X.J., & Rinzel, J. (1992). Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computation, 4(1), 84–97. Scholar
  56. Wendler, G. (1965). The co-ordination of walking movements in arthropods. Symposium of the Society for Experimental Biology, 20, 229–249.Google Scholar
  57. Wosnitza, A., Bockemuhl, T., Dubbert, M., Scholz, H., Büschges, A. (2013). Inter-leg coordination in the control of walking speed in Drosophila. Journal of Experimental Biology, 216(3), 480–491. Scholar
  58. Zhang, C., & Lewis, T.J. (2013). Phase response properties of half-center oscillators. Journal of Computational Neuroscience, 35(1), 55–74. Scholar
  59. Zhang, C., & Lewis, T.J. (2016). Robust phase-waves in chains of half-center oscillators. Journal of Mathematical Biology.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Heisenberg Research Group of Computational Neuroscience - Modeling Neural Network Function, Department of Animal Physiology, Institute of ZoologyUniversity of CologneCologneGermany
  2. 2.Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3)Research Center JülichJülichGermany

Personalised recommendations