Journal of Computational Neuroscience

, Volume 43, Issue 3, pp 273–294 | Cite as

Short-term depression and transient memory in sensory cortex

  • Grant Gillary
  • Rüdiger von der Heydt
  • Ernst Niebur
Article

Abstract

Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.

Keywords

Positive feedback network Derivative feedback network Balanced network Sensory memory Persistent neuronal activity Short-term depression 

References

  1. Barak, O., & Tsodyks, M. (2007). Persistent activity in neural networks with dynamic synapses. PLoS Computational Biology, 3(2), e35.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beck, O., Chistiakova, M., Obermayer, K., & Volgushev, M. (2005). Adaptation at synaptic connections to layer 2/3 pyramidal cells in rat visual cortex. Journal of Neurophysiology, 94(1), 363–376.CrossRefPubMedGoogle Scholar
  3. Castro-Alamancos, M.A., & Connors, B.W. (1997). Distinct forms of short-term plasticity at excitatory synapses of hippocampus and neocortex. Proceedings of the National Academy of Sciences, 94(8), 4161–4166.CrossRefGoogle Scholar
  4. Chubykin, A.A., Roach, E.B., Bear, M.F., & Shuler, M.G.H. (2013). A cholinergic mechanism for reward timing within primary visual cortex. Neuron, 77(4), 723–735.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Compte, A., Brunel, N., Goldman-Rakic, P.S., & Wang, X.J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.CrossRefPubMedGoogle Scholar
  6. Cormier, R., Greenwood, A., & Connor, J. (2001). Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. Journal of Neurophysiology, 85(1), 399–406.PubMedGoogle Scholar
  7. Craft, E., Schütze, H., Niebur, E., & von der Heydt, R. (2007). A neural model of figure-ground organization. Journal of Neurophysiology, 97(6), 4310–26. PMID17442769.CrossRefPubMedGoogle Scholar
  8. Curtis, C.E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in cognitive sciences, 7(9), 415–423.CrossRefPubMedGoogle Scholar
  9. Denève, S., & Machens, C.K. (2016). Efficient codes and balanced networks. Nature Neuroscience, 19(3), 375.CrossRefPubMedGoogle Scholar
  10. Ganguli, S., Huh, D., & Sompolinsky, H. (2008). Memory traces in dynamical systems. Proceedings of the National Academy of Sciences, 105(48), 18:970–18:975.CrossRefGoogle Scholar
  11. Gavornik, J.P., & Shouval, H.Z. (2011). A network of spiking neurons that can represent interval timing: mean field analysis. Journal of Computational Neuroscience, 30(2), 501–513.CrossRefPubMedGoogle Scholar
  12. Gavornik, J.P., Shuler, M.G.H., Loewenstein, Y., Bear, M.F., & Shouval, H.Z. (2009). Learning reward timing in cortex through reward dependent expression of synaptic plasticity. Proceedings of the National Academy of Sciences, 106(16), 6826–6831.CrossRefGoogle Scholar
  13. Gillary, G., & Niebur, E. (2016). The edge of stability: Response times and delta oscillations in balanced networks. PLoS Computational Biology, 12(9), e1005,121.CrossRefGoogle Scholar
  14. Greenlee, M.W., Georgeson, M.A., Magnussen, S., & Harris, J.P. (1991). The time course of adaptation to spatial contrast. Vision Research, 31(2), 223–236.CrossRefPubMedGoogle Scholar
  15. Guo, K., Mahmoodi, S., Robertson, R.G., & Young, M.P. (2006). Longer fixation duration while viewing face images. Experimental Brain Research, 171(1), 91–98.CrossRefPubMedGoogle Scholar
  16. Gupta, A., Wang, Y., & Markram, H. (2000). Organizing principles for a diversity of gabaergic interneurons and synapses in the neocortex. Science, 287(5451), 273–278.CrossRefPubMedGoogle Scholar
  17. Hansel C, Artola A, & Singer W (1997). Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. European Journal of Neuroscience, 9(11), 2309–2322.CrossRefPubMedGoogle Scholar
  18. Hardy, N.F., & Buonomano, D.V. (2016). Neurocomputational models of interval and pattern timing. Current Opinion in Behavioral Sciences, 8, 250–257.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hempel, C.M., Hartman, K.H., Wang, X.J., Turrigiano, G.G., & Nelson, S.B. (2000). Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. Journal of Neurophysiology, 83(5), 3031–3041.PubMedGoogle Scholar
  20. Johnson, H.A., Goel, A., & Buonomano, D.V. (2010). Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nature Neuroscience, 13(8), 917–919.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Leopold, D.A., Rhodes, G., Müller, K. M., & Jeffery, L. (2005). The dynamics of visual adaptation to faces. Proceedings of the Royal Society of London B: Biological Sciences, 272(1566), 897–904.CrossRefGoogle Scholar
  22. Lim, S., & Goldman, M.S. (2013). Balanced cortical microcircuitry for maintaining information in working memory. Nature Neuroscience, 16(9), 1306–1314.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lim, S., & Goldman, M.S. (2014). Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. The Journal of Neuroscience, 34(20), 6790–6806.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Major, G., & Tank, D. (2004). Persistent neural activity: prevalence and mechanisms. Current Opinion in Neurobiology, 14(6), 675–684.CrossRefPubMedGoogle Scholar
  25. Mi, Y., Li, L., Wang, D., & Wu, S. (2014). A synaptical story of persistent activity with graded lifetime in a neural system. In Advances in Neural Information Processing Systems (pp. 352–360).Google Scholar
  26. Mihalas, S., Dong, Y., von der Heydt, R., & Niebur, E. (2011). Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects. Proceedings of the National Academy of Sciences, 108(18), 7583–8. PMC3088583.CrossRefGoogle Scholar
  27. Murphy, B., & Miller, K. (2009). Balanced amplification: A new mechanism of selective amplification of neural activity patterns. Neuron, 61(4), 635–648.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Myme, C.I., Sugino, K., Turrigiano, G.G., & Nelson, S.B. (2003). The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices. Journal of Neurophysiology, 90 (2), 771–779.CrossRefPubMedGoogle Scholar
  29. Nikolić, D, Häusler, S, Singer, W., & Maass, W. (2009). Distributed fading memory for stimulus properties in the primary visual cortex. PLoS Biology, 7(12), e1000, 260.CrossRefGoogle Scholar
  30. O’Herron, P., & von der Heydt, R (2009). Short-term memory for figure-ground organization in the visual cortex. Neuron, 61(5), 801–809. PMC2707495.CrossRefPubMedPubMedCentralGoogle Scholar
  31. O’Herron, P., & von der Heydt, R. (2011). Representation of object continuity in the visual cortex. Journal of Vision, 11(2). PMC3160770.Google Scholar
  32. Pasternak, T., & Greenlee, M.W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97–107.CrossRefPubMedGoogle Scholar
  33. Patterson, M.A., Lagier, S., & Carleton, A. (2013). Odor representations in the olfactory bulb evolve after the first breath and persist as an odor afterimage. Proceedings of the National Academy of Sciences, 110(35), E3340–E3349.CrossRefGoogle Scholar
  34. Petersen, C.C. (2002). Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. Journal of neurophysiology, 87(6), 2904–2914.PubMedGoogle Scholar
  35. Petreanu, L., Gutnisky, D.A., Huber, D., Xu, N.L., O’Connor, D.H., Tian, L., Looger, L., & Svoboda, K. (2012). Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature, 489(7415), 299–303.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Reinhold, K., Lien, A.D., & Scanziani, M. (2015). Distinct recurrent versus afferent dynamics in cortical visual processing. Nature Neuroscience, 18(12), 1789–1797.CrossRefPubMedGoogle Scholar
  37. Reyes, A.D. (2011). Synaptic short-term plasticity in auditory cortical circuits. Hearing research, 279(1), 60–66.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rubin, D.B., Van Hooser, S.D., & Miller, K.D. (2015). The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron, 85(2), 402–417.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Russell, A.F., Mihalas, S., von der Heydt, R., Niebur, E., & Etienne-Cummings, R. (2014). A model of proto-object based saliency. Vision Research, 94, 1–15.CrossRefPubMedGoogle Scholar
  40. Shuler, M.G., & Bear, M.F. (2006). Reward timing in the primary visual cortex. Science, 311(5767), 1606–1609.CrossRefPubMedGoogle Scholar
  41. Sugihara, T., Qiu, F.T., & von der Heydt, R. (2011). The speed of context integration in the visual cortex. Journal of neurophysiology, 106(1), 374–385. PMC3129740.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Super, H., Spekreijse, H., & Lamme, V. (2001). A neural correlate of working memory in the monkey primary visual cortex. Science, 293, 120–124.CrossRefPubMedGoogle Scholar
  43. Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821– 835.CrossRefPubMedGoogle Scholar
  44. Tsodyks, M.V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences, 94, 719–23.CrossRefGoogle Scholar
  45. Tsumoto, T., & Yasuda, H. (1996). A switching role of postsynaptic calcium in the induction of long-term potentiation or long-term depression in visual cortex. In Seminars in Neuroscience, (Vol. 8 pp. 311–319): Elsevier.Google Scholar
  46. Wang, X.J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. The Journal of Neuroscience, 19(21), 9587–9603. PMID10531461.PubMedGoogle Scholar
  47. Xue, M., Atallah, B.V., & Scanziani, M. (2014). Equalizing excitation-inhibition ratios across visual cortical neurons. Nature, 511(7511), 596.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Grant Gillary
    • 1
  • Rüdiger von der Heydt
    • 1
  • Ernst Niebur
    • 1
  1. 1.Zanvyl Krieger Mind/Brain Institute and Solomon Snyder Department of NeuroscienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations