Journal of Computational Neuroscience

, Volume 43, Issue 3, pp 243–271 | Cite as

Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties

  • Horacio G. Rotstein


The generation of spiking resonances in neurons (preferred spiking responses to oscillatory inputs) requires the interplay of the intrinsic ionic currents that operate at the subthreshold voltage level and the spiking mechanisms. Combinations of the same types of ionic currents in different parameter regimes may give rise to different types of nonlinearities in the voltage equation (e.g., parabolic- and cubic-like), generating subthreshold (membrane potential) oscillations patterns with different properties. These nonlinearities are not apparent in the model equations, but can be uncovered by plotting the voltage nullclines in the phase-plane diagram. We investigate the spiking resonant properties of conductance-based models that are biophysically equivalent at the subthreshold level (same ionic currents), but dynamically different (parabolic- and cubic-like voltage nullclines). As a case study we consider a model having a persistent sodium and a hyperpolarization-activated (h-) currents, which exhibits subthreshold resonance in the theta frequency band. We unfold the concept of spiking resonance into evoked and output spiking resonance. The former focuses on the input frequencies that are able to generate spikes, while the latter focuses on the output spiking frequencies regardless of the input frequency that generated these spikes. A cell can exhibit one or both types of resonances. We also measure spiking phasonance, which is an extension of subthreshold phasonance (zero-phase-shift response to oscillatory inputs) to the spiking regime. The subthreshold resonant properties of both types of models are communicated to the spiking regime for low enough input amplitudes as the voltage response for the subthreshold resonant frequency band raises above threshold. For higher input amplitudes evoked spiking resonance is no longer present in these models, but output spiking resonance is present primarily in the parabolic-like model due to a cycle skipping mechanism (involving mixed-mode oscillations), while the cubic-like model shows a better 1:1 entrainment. We use dynamical systems tools to explain the underlying mechanisms and the mechanistic differences between the resonance types. Our results demonstrate that the effective time scales that operate at the subthreshold regime to generate intrinsic subthreshold oscillations, mixed-mode oscillations and subthreshold resonance do not necessarily determine the existence of a preferred spiking response to oscillatory inputs in the same frequency band. The results discussed in this paper highlight both the complexity of the suprathreshold responses to oscillatory inputs in neurons having resonant and amplifying currents with different time scales and the fact that the identity of the participating ionic currents is not enough to predict the resulting patterns, but additional dynamic information, captured by the geometric properties of the phase-space diagram, is needed.


Preferred frequency response Phasonance Resonance Biophysical models Oscillations Membrane potential oscillations 



This work was partially supported by the NSF grants DMS-1313861 and DMS-1608077 (HGR). The author thanks Eran Stark for useful discussions. The author is grateful to the Courant Institute of Mathematical Sciences at NYU.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. Acker, C.D., Kopell, N., & White, J.A. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.CrossRefPubMedGoogle Scholar
  2. Art, J.J., Crawford, A.C., & Fettiplace, R. (1986). Electrical resonance and membrane currents in turtle cochlear hair cells. Hearing Research, 22, 31–36.CrossRefPubMedGoogle Scholar
  3. Augustin, M., Ladenbauer, J., & Obermayer, K. (2013). How adaptaion shapes spike rate oscillations in recurrent neuronal networks. Frontiers in Computational Neuroscience, 7, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beatty, J., Song, S.C., & Wilson, C.J. (2015). Cell-type-specific resonances shape the response of striatal neurons to synaptic inputs. Journal of Neurophysiology, 113, 688–700.CrossRefPubMedGoogle Scholar
  5. Berke, J. D. (2011). Functional properties of striatal fast-spiking interneurons. Front Systems Neuroscience, 5, 45.CrossRefGoogle Scholar
  6. Boehlen, A., Heinemann, U., & Erchova, I. (2010). The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. The Journal of Neuroscience, 30, 4585–4589.CrossRefPubMedGoogle Scholar
  7. Boehlen, A., Henneberger, C., Heinemann, U., & Erchovav, I. (2013). Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II, stellate cells. Journal of Neurophysiology, 109, 445–463.CrossRefPubMedGoogle Scholar
  8. Broicher, T., Malerba, P., Dorval, A.D., Borisyuk, A., Fernandez, F.R., & White, J.A. (2012). spike phase locking in CA1 pyramidal neurons depends on background conductance and firing rate. The Journal of Neuroscience, 32, 14374–14388.CrossRefPubMedGoogle Scholar
  9. Brumberg, J.C., & Gutkin, B.S. (2007). Cortical pyramidal cells as non-linear oscillators: experimental and spike-generation theory. Brain Research, 1171, 122–137.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brunel, N., Hakim, V., & Richardson, M. J. (2003). Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Physical Review E, 67, 051916.CrossRefGoogle Scholar
  11. Burden, R.L., & Faires, J.D. (1980). Numerical analysis. Boston: PWS Publishing Company.Google Scholar
  12. Carandini, M., Mechler, F., Leonard, C.S., & Movshon, J.A. (1996). Spike train encoding by regular-spiking cells of the visual cortex. Journal of Neurophysiology, 76, 3425–3441.PubMedGoogle Scholar
  13. Chen, Y., Li, H., Rotstein, G., & Nadim, F. (2016). Membrane potential resonance frequency directly influences network frequency through gap junctions. Journal of Neurophysiology, 116, 1554–1563.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience. Cambridge: The MIT Press.Google Scholar
  15. Dorval, A.D.J.r., & White, J.A. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. Journal of Neuroscience, 25, 10025–10028.CrossRefPubMedGoogle Scholar
  16. Drover, J.D., Tohidi, V., Bose, A., & Nadim, F. (2007). Combining synaptic and cellular resonance in a feedforward neuronal network. Neurocomputing, 70, 2041–2045.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dwyer, J., Lee, H., Martell, A., & van Drongelen, W. (2012). Resonance in neocortical neurons and networks. The European Journal of Neuroscience, 36, 3698–3708.CrossRefPubMedGoogle Scholar
  18. D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., Fontana, A., & Naldi, G. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K + - dependent mechanism. The Journal of Neuroscience, 21, 759–770.PubMedGoogle Scholar
  19. D’Angelo, E., Koekkoek, S.K.E., Lombardo, P., Solinas, S., Ros, E., Garrido, J., Schonewille, M., & De Zeeuw, C.I. (2009). Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 162, 805–815.CrossRefPubMedGoogle Scholar
  20. Engel, T.A., Schimansky-Geier, L., Herz, A.V., Schreiber, S., & Erchova, I. (2008). Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. Journal of Neurophysiology, 100, 1576–1588.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Erchova, I., Kreck, G., Heinemann, U., & Herz, A.V.M. (2004). Dynamics of rat entorhinal cortex layer II and III cells: Characteristics of membrane potential resonance at rest predict oscillation properties near threshold. The Journal of Physiology, 560, 89–110.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ermentrout, G.B., & Terman, D. (2010). Mathematical foundations of neuroscience. Berlin: Springer.CrossRefGoogle Scholar
  23. Fox, D., Tseng, H., Rotstein, H.G., & Nadim, F. (2013). Membrane potential resonance of bursting neuron captured with an ICa/Ih biophysical model using multi-objective evolutionary algorithms. Society for Neuroscience Abstracts, 372.08, 79.Google Scholar
  24. Fox, D., Tseng, H., Rotstein, H.G., & Nadim, F. (2014a). Using multi-objective evolutionary algorithms to predict the parameters that determine membrane resonance in a biophysical model of bursting neurons. BMC Neuroscience, 15, 79.CrossRefGoogle Scholar
  25. Fox, D.M., Tseng, H.-A., Rotstein, H.G., & Nadim, F. (2014b). The role of a persistent inward current in shaping membrane resonance properties of different neuron types in an oscillatory network. Society for Neuroscience Abstracts, 215, 06.Google Scholar
  26. Fox, D.M., Rotstein, H.G., & Nadim, F. (2016). Neuromodulation produces complex changes in resonance profiles of neurons in an oscillatory network. Society for Neuroscience Abstracts, 811, 08.Google Scholar
  27. Fox, D., Tseng, H., Smolinsky, T., Rotstein, H.G., & Nadim, F. (2017). Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Computational Biology, 13, e1005565.Google Scholar
  28. FitzHugh, R. (1961). Impulses and physiological states in models of nerve membrane. Biophysical Journal, 1, 445–466.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gastrein, P., Campanac, E., Gasselin, C., Cudmore, R.H., Bialowas, A., Carlier, E., Fronzaroli-Molinieres, L., Ankri, N., & Debanne, D. (2011). The role of hyperpolarization-activated cationic current in spike-time precision and intrinsic resonance in cortical neurons in vitro. The Journal of Physiology, 589, 3753–3773.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gutfreund, Y., Yarom, Y., & Segev, I. (1995). Subthreshold oscillations and resonant frequency in Guinea pig cortical neurons: Physiology and modeling. The Journal of Physiology, 483, 621–640.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Haas, J.S., & White, J.A. (2002). Frequency selectivity of layer II, stellate cells in the medial entorhinal cortex. Journal of Neurophysiology, 88, 2422–2429.CrossRefPubMedGoogle Scholar
  32. Harish, O., & Golomb, D. (2010). Control of the firing patterns of vibrissa motoneurons by modulatory and phasic synaptic inputs: a modeling study. Journal of Neurophysiology, 103, 2684–2699.CrossRefPubMedGoogle Scholar
  33. Heys, J.G., Giacomo, L.M., & Hasselmo, M.E. (2010). Cholinergic modulation of the resonance properties of stellate cells in layer II, of the medial entorhinal. Journal of Neurophysiology, 104, 258–270.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heys, J.G., Schultheiss, N.W., Shay, C.F., Tsuno, Y., & Hasselmo, M.E. (2012). Effects of acetylcholine on neuronal properties in entorhinal cortex. Frontiers in Behavioral Neuroscience, 6, 32.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Higgs, M.H., & Spain, W.J. (2009). Conditional bursting enhances resonant firing in neocortical layer 2-3 pyramidal neurons. Journal of Neuroscience, 29, 1285–1299.CrossRefPubMedGoogle Scholar
  36. Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conductance and excitation in nerve. The Journal of Physiology, 117, 500–544.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hu, H., Vervaeke, K., & Storm, J.F. (2002). Two forms of electrical resonance at theta frequencies generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. Journal of Physiology, 545.3, 783–805.CrossRefGoogle Scholar
  38. Hu, H., Vervaeke, K., Graham, J.F., & Storm, J.L. (2009). Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. Journal of Neuroscience, 29, 14472–14483.CrossRefPubMedGoogle Scholar
  39. Hutcheon, B., & Yarom, Y. (2000). Resonance, oscillations and the intrinsic frequency preferences in neurons. Trends in Neurosciences, 23, 216–222.CrossRefPubMedGoogle Scholar
  40. Hutcheon, B., Miura, R.M., & Puil, E. (1996). Subthreshold membrane resonance in neocortical neurons. Journal of Neurophysiology, 76, 683–697.PubMedGoogle Scholar
  41. Izhikevich, E.M. (2002). Resonance and selective communication via bursts in neurons having subthreshold oscillations. Bio Systems, 67, 95–102.CrossRefPubMedGoogle Scholar
  42. Izhikevich, E. (2006). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press.Google Scholar
  43. Izhikevich, E.M. (2010). Hybrid spiking models. Philosophical Transactions of the Royal Society A, 368, 5061–5070.CrossRefGoogle Scholar
  44. Kispersky, T., White, J.A., & Rotstein, H.G. (2010). The mechanism of abrupt transition between theta and hyperexcitable spiking activity in medial entorhinal cortex layer II stellate cells. PloS One, 5, e13697.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kispersky, T.J., Fernandez, F.R., Economo, M.N., & White, J.A. (2012). Spike resonance properties in hippocampal O,-LM cells are dependent on refractory dynamics. Journal of Neuroscience, 32, 3637–3651.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Krupa, M., & Szmolyan, P. (2001). Relaxation oscillation and canard explosion. Journal of Difference Equations, 174, 312–368.CrossRefGoogle Scholar
  47. Lampl, I, & Yarom, Y. (1997). Subthreshold oscillations and resonant behaviour: Two manifestations of the same mechanism. Neuron, 78, 325–341.Google Scholar
  48. Lau, T., & Zochowski, M. (2011). The resonance frequency shift, pattern formation, and dynamical network reorganization via sub-threshold input. PLoS ONE, 6, e18983.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ledoux, E., & Brunel, N. (2011). Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Frontiers in Computational Neuroscience, 5, 1–17.CrossRefGoogle Scholar
  50. Llinás, R.R., & Yarom, Y. (1986). Oscillatory properties of Guinea pig olivary neurons and their pharmachological modulation: an in vitro study. The Journal of Physiology, 376, 163–182.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Marcelin, B., Becker, A., Migliore, M., Esclapez, M., & Bernard, C. (2009). h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiology of Disease, 33, 436–447.CrossRefPubMedGoogle Scholar
  52. Maex, R., & De Schutter, E. (2003). Resonant synchronization in heterogeneous networks of inhibitory neurons. Journal of Neuroscience, 23, 10503–10514.PubMedGoogle Scholar
  53. Mikiel-Hunter, J., Kotak, V., & Rinzel, J. (2016). High-frequency resonance in the gerbil medial superior olive. PLoS Computational Biology, 12, 1005166.Google Scholar
  54. Moca, V.V., Nicolic, D., Singer, W., & Muresan, R. (2014). Membrane resonance enables stable robust gamma oscillations. Cerebral Cortex, 24, 119–142.CrossRefPubMedGoogle Scholar
  55. Muresan, R., & Savin, C. (2007). Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. Journal of Neurophysiology, 97, 1911–1930.CrossRefPubMedGoogle Scholar
  56. Nagumo, J.S., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of IRE, 50, 2061–2070.CrossRefGoogle Scholar
  57. Narayanan, R., & Johnston, D. (2007). Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron, 56, 1061–1075.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Narayanan, R., & Johnston, D. (2008). The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. The Journal of Neuroscience, 28, 5846–5850.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nolan, M.F., Dudman, J.T., Dodson, P.D., & Santoro, B. (2007). HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. The Journal of Neuroscience, 27, 12440–12551.CrossRefPubMedGoogle Scholar
  60. Nowak, L.G., Sanchez-Vives, M.V., & McCormick, D.A. (1997). Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cerebral Cortex, 7, 487–501.CrossRefPubMedGoogle Scholar
  61. Pollina, B., Benardete, D., & Noonburg, V.W. (2003). A periodically forced wilson-cowan system. SIAM Journal on Applied Mathematics, 5, 1585–1603.CrossRefGoogle Scholar
  62. Pike, F.G., Goddard, R.S., Suckling, J.M., Ganter, P., Kasthuri, N., & Paulsen, O. (2000). Distinct frequency preferences of different types of rat hippocampal neurons in response to oscillatory input currents. Journal of Physiology, 529, 205–213.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Prinz, A.A., Thirumalai, V., & Marder, E. (2003). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of Neuroscience, 23, 943–954.PubMedGoogle Scholar
  64. Rathour, R.K., & Narayanan, R. (2012). Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons. Journal of Physiology, 590, 5629–5652.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rathour, R.K., & Narayanan, R. (2014). Homeostasis of functional maps in inactive dendrites emerges in the absence of individual channelostasis. Proceedings of the National Academy of Sciences of the United States of America, 111, E1787–E1796.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rau, F., Clemens, J., Naumov, V., Hennig, R.M., & Schreiber, S. (2015). Firing-rate resonances in the peripheral auditory system of the cricket, gryllus bimaculatus. Journal of Comparative Physiology, 201, 1075–1090.CrossRefPubMedGoogle Scholar
  67. Remme, M.W.H., Lengyel, M., & Gutkin, B.S. (2012). A theoretical framework for the dynamics of multiple intrinsic oscillators in single neurons. In Schultheiss, N.W., Prinz, A.A., & Butera, R.A. (Eds.) Phase response curves in neuroscience theory, experiments and analysis (pp. 53–72). Berlin: Springer.Google Scholar
  68. Remme, M.W.H., Donato, R., Mikiel-Hunter, J., Ballestero, J.A., Foster, S., Rinzel, J., & McAlpine, D. (2014). Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues. Proceedings of the National Academy of Sciences of the United States of America, 111, E2339–E2348.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Richardson, M.J.E., Brunel, N., & Hakim, V. (2003). From subthreshold to firing-rate resonance . Journal of Neurophysiology, 89, 2538–2554.CrossRefPubMedGoogle Scholar
  70. Rotstein, H.G. (2013). Preferred frequency responses to oscillatory inputs in an electrochemical cell model: linear amplitude and phase resonance. Physical Review E, 88, 062913.CrossRefGoogle Scholar
  71. Rotstein, H.G. (2014). Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. The Journal of Mathematical Neuroscience, 4, 11.CrossRefPubMedGoogle Scholar
  72. Rotstein, H.G. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. Journal of Computational Neuroscience, 38, 325–354.CrossRefPubMedGoogle Scholar
  73. Rotstein, H.G. (2017a). The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. Journal of Computational Neuroscience, 42, 133–166.CrossRefPubMedGoogle Scholar
  74. Rotstein, H.G. (2017b). Resonance modulation, annihilation and generation of antiresonance and antiphasonance in 3d neuronal systems: interplay of resonant and amplifying currents with slow dynamics. Journal of Computational Neuroscience, 43, 35–63.Google Scholar
  75. Rotstein, H.G., & Nadim, F. (2014). Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. Journal of Computational Neuroscience, 37, 9–28.CrossRefPubMedGoogle Scholar
  76. Rotstein, H.G., Oppermann, T., White, J.A., & Kopell, N. (2006). A reduced model for medial entorhinal cortex stellate cells: subthreshold oscillations, spiking and synchronization. Journal of Computational Neuroscience, 21, 271–292.CrossRefPubMedGoogle Scholar
  77. Rotstein, H.G., Wechselberger, M., & Kopell, N. (2008). Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II, stellate cell model. SIAM Journal on Applied Dynamical Systems, 7, 1582–1611.CrossRefGoogle Scholar
  78. Rotstein, H.G., Coombes, S., & Gheorghe, A.M. (2012). Canard-like explosion of limit cycles in two-dimensional piecewise-linear models of FitzHugh-Nagumo type. SIAM Journal on Applied Dynamical Systems, 11, 135–180.CrossRefGoogle Scholar
  79. Schrader, M., Braune, M., & Engel, H. (1995). Dynamics of spiral waves in excitable media subjected to external periodic forcing. Physical Review E, 52, 98–109.CrossRefGoogle Scholar
  80. Schreiber, S., Erchova, I, Heinemann, U., & Herz, A.V. (2004). Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. Journal of Neurophysiology, 92, 408–415.CrossRefPubMedGoogle Scholar
  81. Sciamanna, G., & Wilson, C.J. (2011). The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons. Journal of Neurophysiology, 106, 2936–2949.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sharp, A.A., O’Neil, M.B., Abbott, L.F., & Marder, E. (1993). The dynamic clamp: artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.CrossRefPubMedGoogle Scholar
  83. Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., & D’Angelo, E. (2007). Fast-reset of pacemaking and theta-frequency resonance in cerebellar Golgi cells: simulations of their impact in vivo. Frontiers in Cellular Neuroscience, 1, 4.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Song, S.C., Beatty, J.A., & Wilson, C.J. (2016). The ionic mechanism of membrane potential oscillations and membrane resonance in striatal lts interneurons. Journal of Neurophysiology, 116, 1752–1764.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H.G., & Buzsáki, G. (2013). Inhibition-induced theta resonance in cortical circuits. Neuron, 80, 1263–1276.CrossRefPubMedGoogle Scholar
  86. Tchumatchenko, T., & Clopath, C. (2014). Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance. Nature Communications, 5, 5512.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Thevenin, J., Romanelli, M., Vallet, M., Brunel, N., & Erneux, T. (2011). Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking. Physical Review Letters, 107, 104101.CrossRefPubMedGoogle Scholar
  88. Tikidji-Hamburyan, R.A., Martínez, J.J., White, J.A., & Canavier, C. (2015). Resonant interneurons can increase robustness of gamma oscillations. Journal of Neuroscience, 35, 15682–15695.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tohidi, V. (2008). Membrane resonance of pacemaker neurons of an oscillatory network. PhD Thesis. Newark: Rutgers University.Google Scholar
  90. Tohidi, V., & Nadim, F. (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. Journal of Neuroscience, 29, 6427–6435.Google Scholar
  91. Tseng, H., & Nadim, F. (2010). The membrane potential waveform on bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. The Journal of Neuroscience, 30, 10809–10819.CrossRefPubMedPubMedCentralGoogle Scholar
  92. van Brederode, J.F.M., & Berger, A.J. (2008). Spike-firing resonance in hypoglossal motoneurons. Journal of Neurophysiology, 99, 2916–2928.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Veltz, R., & Sejnowski, T.J. (2015). Periodic forcing of stabilized E-I networks Nonlinear resonance curves and dynamics. Neural Computation, 27, 2477–2509.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Vierling-Claassen, D., Siekmeier, P., Stufflebeam, S., & Kopell, N. (2008). Modeling GABA alterations in schizophrenia: a link between impared inhibition and altered gamma and beta range auditory entrainment. Journal of Neurophysiology, 99, 2656–2671.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Vierling-Claassen, D., & Kopell, N. (2009). The dynamics of a periodically forced cortical microcircuit, with an application to schizophrenia. SIAM. Journal on Applied Dynamical Systems, 8, 710–733.CrossRefGoogle Scholar
  96. Vierling-Claassen, D., Cardin, J.A., Moore, C.I., & Jones, S.R. (2010). Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons. Frontiers in Human Neuroscience, 4, 00198.CrossRefGoogle Scholar
  97. Wu, N., Hsiao, C.-F., & Chandler, S.H. (2001). Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation. The Journal of Neuroscience, 21, 3729–3739.PubMedGoogle Scholar
  98. Yang, S., Lin, W., & Feng, A.A. (2009). Wide-ranging frequency preferences of auditory midbrain neurons: roles of membrane time constant and synaptic properties. The European Journal of Neuroscience, 30, 76–90.CrossRefPubMedGoogle Scholar
  99. Zemankovics, R., Káli, S., Paulsen, O., Freund, T.F., & Hájos, N. (2010). Differences in subthershold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. The Journal of Physiology, 588, 2109–2132.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Federated Department of Biological SciencesRutgers University and New Jersey Institute of TechnologyNewarkUSA
  2. 2.Institute for Brain and Neuroscience ResearchNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations