Journal of Computational Neuroscience

, Volume 43, Issue 1, pp 93–106 | Cite as

Optimal feedback control to describe multiple representations of primary motor cortex neurons



Primary motor cortex (M1) neurons are tuned in response to several parameters related to motor control, and it was recently reported that M1 is important in feedback control. However, it remains unclear how M1 neurons encode information to control the musculoskeletal system. In this study, we examined the underlying computational mechanisms of M1 based on optimal feedback control (OFC) theory, which is a plausible hypothesis for neuromotor control. We modelled an isometric torque production task that required joint torque to be regulated and maintained at desired levels in a musculoskeletal system physically constrained by muscles, which act by pulling rather than pushing. Then, a feedback controller was computed using an optimisation approach under the constraint. In the presence of neuromotor noise, known as signal-dependent noise, the sensory feedback gain is tuned to an extrinsic motor output, such as the hand force, like a population response of M1 neurons. Moreover, a distribution of the preferred directions (PDs) of M1 neurons can be predicted via feedback gain. Therefore, we suggest that neural activity in M1 is optimised for the musculoskeletal system. Furthermore, if the feedback controller is represented in M1, OFC can describe multiple representations of M1, including not only the distribution of PDs but also the response of the neuronal population.


Motor control Feedback gain Preferred direction Signal-dependent noise Model predictive control 

Supplementary material

10827_2017_650_MOESM1_ESM.mat (524 kb)
ESM 1(MAT 524 kb)
10827_2017_650_MOESM2_ESM.m (2 kb)
ESM 2(M 2 kb)
10827_2017_650_MOESM3_ESM.m (23 kb)
ESM 3(M 22 kb)
10827_2017_650_MOESM4_ESM.m (9 kb)
ESM 4(M 8 kb)


  1. Ajemian, R., Green, A., Bullock, D., Sergio, L., Kalaska, J., & Grossberg, S. (2008). Assessing the function of motor cortex: Single-neuron models of how neural response is modulated by limb biomechanics. Neuron, 58(3), 414–428. doi:10.1016/j.neuron.2008.02.033.CrossRefPubMedGoogle Scholar
  2. Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38(1), 3–20. doi:10.1016/S0005-1098(01)00174-1.CrossRefGoogle Scholar
  3. Braun, D. A., Nagengast, A. J., & Wolpert, D. M. (2011). Risk-sensitivity in sensorimotor control. Frontiers in Human Neuroscience, 5, 1. doi:10.3389/fnhum.2011.00001.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cheng, E. J., & Scott, S. H. (2000). Morphometry of Macaca mulatta forelimb. I. Shoulder and elbow muscles and segment inertial parameters. Journal of Morphology, 245(3), 206–224. doi:10.1002/1097-4687(200009)245:3206::Aid-Jmor33.0.Co;2-U.CrossRefPubMedGoogle Scholar
  5. Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., et al. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51–56. doi:10.1038/nature11129.PubMedPubMedCentralGoogle Scholar
  6. Clamann, H. P. (1969). Statistical analysis of motor unit firing patterns in a human skeletal muscle. Biophysical Journal, 9(10), 1233–1251. doi:10.1016/S0006-3495(69)86448-9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Desmurget, M., Epstein, C. M., Turner, R. S., Prablanc, C., Alexander, G. E., & Grafton, S. T. (1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neuroscience, 2(6), 563–567.CrossRefPubMedGoogle Scholar
  8. Dimitriou, M., Wolpert, D. M., & Franklin, D. W. (2013). The temporal evolution of feedback gains rapidly update to task demands. Journal of Neuroscience, 33(26), 10898–10909. doi:10.1523/Jneurosci.5669-12.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Doyle, J. C., & Csete, M. (2011). Architecture, constraints, and behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 15624–15630. doi:10.1073/pnas.1103557108.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Franklin, D. W., Burdet, E., Tee, K. P., Osu, R., Chew, C. M., Milner, T. E., et al. (2008). CNS learns stable, accurate, and efficient movements using a simple algorithm. The Journal of Neuroscience, 28(44), 11165–11173. doi:10.1523/JNEUROSCI.3099-08.2008.CrossRefPubMedGoogle Scholar
  11. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. Journal of Neuroscience, 2(11), 1527–1537.PubMedGoogle Scholar
  12. Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. Journal of Neuroscience, 8(8), 2928–2937.PubMedGoogle Scholar
  13. Georgopoulos, A. P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science, 256(5064), 1692–1695.CrossRefPubMedGoogle Scholar
  14. Graham, K. M., & Scott, S. H. (2003). Morphometry of Macaca mulatta forelimb. III. Moment arm of shoulder and elbow muscles. Journal of Morphology, 255(3), 301–314. doi:10.1002/jmor.10064.CrossRefPubMedGoogle Scholar
  15. Griffin, D. M., Hudson, H. M., Belhaj-Saif, A., McKiernan, B. J., & Cheney, P. D. (2008). Do corticomotoneuronal cells predict target muscle EMG activity? Journal of Neurophysiology, 99(3), 1169–1186. doi:10.1152/jn.00906.2007.CrossRefPubMedGoogle Scholar
  16. Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780–784. doi:10.1038/29528.CrossRefPubMedGoogle Scholar
  17. Herter, T. M., Kurtzer, I., Cabel, D. W., Haunts, K. A., & Scott, S. H. (2007). Characterization of torque-related activity in primary motor cortex during a multijoint postural task. Journal of Neurophysiology, 97(4), 2887–2899. doi:10.1152/jn.00757.2006.CrossRefPubMedGoogle Scholar
  18. Hirashima, M., & Nozaki, D. (2012). Learning with slight forgetting optimizes sensorimotor transformation in redundant motor systems. PLoS Computational Biology, 8(6), e1002590. doi:10.1371/journal.pcbi.1002590.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Izawa, J., & Shadmehr, R. (2008). On-line processing of uncertain information in visuomotor control. Journal of Neuroscience, 28(44), 11360–11368. doi:10.1523/JNEUROSCI.3063-08.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Izawa, J., Rane, T., Donchin, O., & Shadmehr, R. (2008). Motor adaptation as a process of reoptimization. Journal of Neuroscience, 28(11), 2883–2891. doi:10.1523/Jneurosci.5359-07.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jones, K. E., Hamilton, A. F. D., & Wolpert, D. M. (2002). Sources of signal-dependent noise during isometric force production. Journal of Neurophysiology, 88(3), 1533–1544. doi:10.1152/jn.00985.2001.PubMedGoogle Scholar
  22. Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285(5436), 2136–2139. doi:10.1126/science.285.5436.2136.CrossRefPubMedGoogle Scholar
  23. Kurtzer, I., Pruszynski, J. A., Herter, T. M., & Scott, S. H. (2006). Primate upper limb muscles exhibit activity patterns that differ from their anatomical action during a postural task. Journal of Neurophysiology, 95(1), 493–504.CrossRefPubMedGoogle Scholar
  24. Lillicrap, T. P., & Scott, S. H. (2013). Preference distributions of primary motor cortex neurons reflect control solutions optimized for limb biomechanics. Neuron, 77(1), 168–179. doi:10.1016/j.neuron.2012.10.041.CrossRefPubMedGoogle Scholar
  25. Liu, D., & Todorov, E. (2007). Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. Journal of Neuroscience, 27(35), 9354–9368. doi:10.1523/Jneurosci.1110-06.2007.CrossRefPubMedGoogle Scholar
  26. Lockhart, D. B., & Ting, L. H. (2007). Optimal sensorimotor transformations for balance. Nature Neuroscience, 10(10), 1329–1336. doi:10.1038/nn1986.CrossRefPubMedGoogle Scholar
  27. Maciejowski, J. M. (2001). Predictive control with constraints. Harlow: Pearson Education.Google Scholar
  28. Matthews, P. B. C. (1991). The human stretch reflex and the motor cortex. Trends in Neurosciences, 14(3), 87–91.CrossRefPubMedGoogle Scholar
  29. Matthews, P. B. C. (1996). Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. Journal of Physiology-London, 492(2), 597–628.CrossRefGoogle Scholar
  30. McKiernan, B. J., Marcario, J. K., Karrer, J. H., & Cheney, P. D. (1998). Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. Journal of Neurophysiology, 80(4), 1961–1980.PubMedGoogle Scholar
  31. Mistry, M., Theodorou, E., Schaal, S., & Kawato, M. (2013). Optimal control of reaching includes kinematic constraints. Journal of Neurophysiology, 110(1), 1–11. doi:10.1152/jn.00794.2011.CrossRefPubMedGoogle Scholar
  32. Miyashita, E., & Sakaguchi, Y. (2016). State variables of the arm may be encoded by single neuron activity in the monkey motor cortex. IEEE Transactions on Industrial Electronics, 63(3), 1943–1952. doi:10.1109/TIE.2015.2504579.CrossRefGoogle Scholar
  33. Moran, D. W., & Schwartz, A. B. (1999). Motor cortical representation of speed and direction during reaching. Journal of Neurophysiology, 82(5), 2676–2692.PubMedGoogle Scholar
  34. Morrow, M. M., & Miller, L. E. (2003). Prediction of muscle activity by populations of sequentially recorded primary motor cortex neurons. Journal of Neurophysiology, 89(4), 2279–2288. doi:10.1152/jn.00632.2002.CrossRefPubMedGoogle Scholar
  35. Mulliken, G. H., Musallam, S., & Andersen, R. A. (2008). Decoding trajectories from posterior parietal cortex ensembles. Journal of Neuroscience, 28(48), 12913–12926. doi:10.1523/Jneurosci.1463-08.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nagengast, A. J., Braun, D. A., & Wolpert, D. M. (2009). Optimal control predicts human performance on objects with internal degrees of freedom. PLoS Computational Biology, 5(6), e1000419. doi:10.1371/journal.pcbi.1000419.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nagengast, A. J., Braun, D. A., & Wolpert, D. M. (2010). Risk-sensitive optimal feedback control accounts for sensorimotor behavior under uncertainty. PLoS Computational Biology, 6(7), e1000857. doi:10.1371/journal.pcbi.1000857.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nagengast, A. J., Braun, D. A., & Wolpert, D. M. (2011a). Risk-sensitivity and the mean-variance trade-off: Decision making in sensorimotor control. Proceedings of the Royal Society B: Biological Sciences, 278(1716), 2325–2332. doi:10.1098/rspb.2010.2518.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nagengast, A. J., Braun, D. A., & Wolpert, D. M. (2011b). Risk sensitivity in a motor task with speed-accuracy trade-off. Journal of Neurophysiology, 105(6), 2668–2674. doi:10.1152/jn.00804.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nozaki, D., Nakazawa, K., & Akai, M. (2005). Muscle activity determined by cosine tuning with a nontrivial preferred direction during isometric force exertion by lower limb. Journal of Neurophysiology, 93(5), 2614–2624. doi:10.1152/jn.00960.2004.CrossRefPubMedGoogle Scholar
  41. Osu, R., Kamimura, N., Iwasaki, H., Nakano, E., Harris, C. M., Wada, Y., et al. (2004). Optimal impedance control for task achievement in the presence of signal-dependent noise. Journal of Neurophysiology, 92(2), 1199–1215. doi:10.1152/jn.00519.2003.CrossRefPubMedGoogle Scholar
  42. Pruszynski, J. A., Kurtzer, I., Nashed, J. Y., Omrani, M., Brouwer, B., & Scott, S. H. (2011). Primary motor cortex underlies multi-joint integration for fast feedback control. Nature, 478(7369), 387–390. doi:10.1038/nature10436.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rathelot, J. A., & Strick, P. L. (2009). Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 918–923. doi:10.1073/pnas.0808362106.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Scott, S. H. (2004). Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience, 5(7), 532–546. doi:10.1038/nrn1427.CrossRefPubMedGoogle Scholar
  45. Scott, S. H., Gribble, P. L., Graham, K. M., & Cabel, D. W. (2001). Dissociation between hand motion and population vectors from neural activity in motor cortex. Nature, 413(6852), 161–165. doi:10.1038/35093102.CrossRefPubMedGoogle Scholar
  46. Sergio, L. E., Hamel-Paquet, C., & Kalaska, J. F. (2005). Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks. Journal of Neurophysiology, 94(4), 2353–2378. doi:10.1152/jn.00989.2004.CrossRefPubMedGoogle Scholar
  47. Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381. doi:10.1007/s00221-008-1280-5.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tanaka, H., & Sejnowski, T. J. (2013). Computing reaching dynamics in motor cortex with Cartesian spatial coordinates. Journal of Neurophysiology, 109(4), 1182–1201. doi:10.1152/jn.00279.2012.CrossRefPubMedGoogle Scholar
  49. Todorov, E. (2000). Direct cortical control of muscle activation in voluntary arm movements: A model. Nature Neuroscience, 3(4), 391–398. doi:10.1038/73964.CrossRefPubMedGoogle Scholar
  50. Todorov, E. (2002). Cosine tuning minimizes motor errors. Neural Computation, 14(6), 1233–1260. doi:10.1162/089976602753712918.CrossRefPubMedGoogle Scholar
  51. Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915. doi:10.1038/nn1309.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Todorov, E. (2005). Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation, 17(5), 1084–1108. doi:10.1162/0899766053491887.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235. doi:10.1038/nn963.CrossRefPubMedGoogle Scholar
  54. Trainin, E., Meir, R., & Karniel, A. (2007). Explaining patterns of neural activity in the primary motor cortex using spinal cord and limb biomechanics models. Journal of Neurophysiology, 97(5), 3736–3750. doi:10.1152/jn.01064.2006.CrossRefPubMedGoogle Scholar
  55. Ueyama, Y. (2014a) Feedback gain indicates the preferred direction in optimal feedback control theory. In 2014 I.E. 13th International Workshop on Advanced Motion Control (AMC), 14–16 March 2014 2014a (pp. 651–656). doi:10.1109/AMC.2014.6823358.
  56. Ueyama, Y. (2014b). Mini-max feedback control as a computational theory of sensorimotor control in the presence of structural uncertainty. Frontiers in Computational Neuroscience, 8, 119. doi:10.3389/fncom.2014.00119.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ueyama, Y., & Miyashita, E. (2013). Signal-dependent noise induces muscle co-contraction to achieve required movement accuracy: A simulation study with an optimal control. Current Bioinformatics, 8(1), 16–24. doi:10.2174/1574893611308010005.Google Scholar
  58. Ueyama, Y., & Miyashita, E. (2014). Optimal feedback control for predicting dynamic stiffness during arm movement. IEEE Transactions on Industrial Electronics, 61(2), 1044–1052. doi:10.1109/Tie.2013.2273473.CrossRefGoogle Scholar
  59. Winter, D. A. (2009). Biomechanics and motor control of human movement. Hoboken: John Wiley & Sons Inc..CrossRefGoogle Scholar
  60. Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Systems Design Engineering, Faculty of Science and TechnologySeikei UniversityMusashinoJapan
  2. 2.Department of Rehabilitation EngineeringResearch Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawaJapan

Personalised recommendations