Journal of Computational Neuroscience

, Volume 43, Issue 1, pp 65–79 | Cite as

The influence of depolarization block on seizure-like activity in networks of excitatory and inhibitory neurons

  • Christopher M. KimEmail author
  • Duane Q. Nykamp


The inhibitory restraint necessary to suppress aberrant activity can fail when inhibitory neurons cease to generate action potentials as they enter depolarization block. We investigate possible bifurcation structures that arise at the onset of seizure-like activity resulting from depolarization block in inhibitory neurons. Networks of conductance-based excitatory and inhibitory neurons are simulated to characterize different types of transitions to the seizure state, and a mean field model is developed to verify the generality of the observed phenomena of excitatory-inhibitory dynamics. Specifically, the inhibitory population’s activation function in the Wilson-Cowan model is modified to be non-monotonic to reflect that inhibitory neurons enter depolarization block given strong input. We find that a physiological state and a seizure state can coexist, where the seizure state is characterized by high excitatory and low inhibitory firing rate. Bifurcation analysis of the mean field model reveals that a transition to the seizure state may occur via a saddle-node bifurcation or a homoclinic bifurcation. We explain the hysteresis observed in network simulations using these two bifurcation types. We also demonstrate that extracellular potassium concentration affects the depolarization block threshold; the consequent changes in bifurcation structure enable the network to produce the tonic to clonic phase transition observed in biological epileptic networks.


Depolarization block Seizures Excitatory-inhibitory network Wilson-Cowan model 



This research was supported by the National Science Foundation grant DMS-0847749. We thank Tay Netoff for insightful discussions and motivating our investigation. CMK thanks Bernstein Center Freiburg for their support where part of this work was conducted.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ahmed, O.J., Kramer, M.A., Truccolo, W., Naftulin, J.S., Potter, N.S., Eskandar, E.N., Cosgrove, G.R., Blum, A.S., Hochberg, L.R., & Cash, S.S. (2014). Inhibitory single neuron control of seizures and epileptic traveling waves in humans. BMC Neuroscience, 15(Suppl 1), F3.CrossRefPubMedCentralGoogle Scholar
  2. Barreto, E., & Cressman, J.R. (2011). Ion concentration dynamics as a mechanism for neuronal bursting. Journal of Biological Physics, 37(3), 361–373.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ben-Ari, Y. (2002). Excitatory actions of gaba during development: the nature of the nurture. Nature Reviews Neuroscience, 3(9), 728–739.CrossRefPubMedGoogle Scholar
  4. Beverlin, B., Kakalios, J., Nykamp, D., & Netoff, T.I. (2012). Dynamical changes in neurons during seizures determine tonic to clonic shift. Journal of Computational Neuroscience, 33(1), 41–51.CrossRefPubMedGoogle Scholar
  5. Buckmaster, P.S., Zhang, G.F., & Yamawaki, R. (2002). Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(15), 6650–6658.Google Scholar
  6. Cammarota, M., Losi, G., Chiavegato, A., Zonta, M., & Carmignoto, G. (2013). Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy. The Journal of Physiology, 591(Pt 4), 807–822.CrossRefPubMedGoogle Scholar
  7. Dichter, M., & Spencer, W.A. (1969a). Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. Journal of Neurophysiology, 32(5), 649–662.PubMedGoogle Scholar
  8. Dichter, M., & Spencer, W.A. (1969b). Penicillin-induced interictal discharges from the cat hippocampus. II. Mechanisms underlying origin and restriction. Journal of Neurophysiology, 32(5), 663–687.PubMedGoogle Scholar
  9. Dudek, F.E., & Sutula, T.P. (2007). Epileptogenesis in the dentate gyrus: a critical perspective. Progress in Brain Research, 163(801), 755–773.CrossRefPubMedGoogle Scholar
  10. Dzhala, V.I., Kuchibhotla, K.V., Glykys, J.C., Kahle, K.T., Swiercz, W.B., Feng, G., Kuner, T., Augustine, G.J., Bacskai, B.J., & Staley, K.J. (2010). Progressive nkcc1-dependent neuronal chloride accumulation during neonatal seizures. The Journal of Neuroscience, 30(35), 11745–11761.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ellender, T.J., Raimondo, J.V., Irkle, A., Lamsa, K.P., & Akerman, C.J. (2014). Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges. The Journal of Neuroscience, 34(46), 15208– 15222.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fröhlich, F., Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T.J. (2006). Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(23), 6153–6162.CrossRefGoogle Scholar
  13. Fröhlich, F., Sejnowski, T.J., & Bazhenov, M. (2010). Network bistability mediates spontaneous transitions between normal and pathological brain states. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(32), 10734–10743.CrossRefGoogle Scholar
  14. Fujiwara-Tsukamoto, Y., Isomura, Y., Imanishi, M., Ninomiya, T., Tsukada, M., Yanagawa, Y., Fukai, T., & Takada, M. (2010). Prototypic seizure activity driven by mature hippocampal fast-spiking interneurons. The Journal of Neuroscience, 30(41), 13679–13689.CrossRefPubMedGoogle Scholar
  15. Gastaut, H., & Broughton, R.J. (1972). Epileptic seizures: clinical and electrographic features, diagnosis and treatment. Springfield: Thomas. Scholar
  16. Goodman, D.F., & Brette, R. (2008). The brian simulator. Frontiers in Neuroscience, 3, 26.Google Scholar
  17. Gulyás, A.I., Megías, M., Emri, Z., & Freund, T.F. (1999). Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19(22), 10082– 10097.Google Scholar
  18. Heinemann, U., & Lux, H.D. (1977). Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Research, 120(2), 231–249.CrossRefPubMedGoogle Scholar
  19. Jensen, M.S., & Yaari, Y. (1997). Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. Journal of Neurophysiology, 77(3), 1224–1233.PubMedGoogle Scholar
  20. Jensen, M.S., Azouz, R., & Yaari, Y. (1994). Variant firing patterns in rat hippocampal pyramidal cells modulated by extracellular potassium. Journal of Neurophysiology, 71(3), 831–839.PubMedGoogle Scholar
  21. Kager, H., Wadman, W.J., & Somjen, G.G. (2007). Seizure-like afterdischarges simulated in a model neuron. Journal of Computational Neuroscience, 22(2), 105–128.CrossRefPubMedGoogle Scholar
  22. Karlócai, M.R., Kohus, Z., Káli, S., Ulbert, I., Szabó, G., Máté, Z., Freund, T.F., & Gulyás, A.I. (2014). Physiological sharp wave-ripples and interictal events in vitro: what’s the difference? Brain: A Journal of Neurology, 137(Pt 2), 463–485.CrossRefGoogle Scholar
  23. Korn, S.J., Giacchino, J.L., Chamberlin, N.L., & Dingledine, R. (1987). Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. Journal of Neurophysiology, 57(1), 325–340.PubMedGoogle Scholar
  24. LeBeau, F.E.N., Towers, S.K., Traub, R.D., Whittington, M.A., & Buhl, E.H. (2002). Fast network oscillations induced by potassium transients in the rat hippocampus in vitro. The Journal of Physiology, 542(Pt 1), 167–179.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Megías, M., Emri, Z., Freund, T.F., & Gulyás, A.I. (2001). Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience, 102(3), 527–540.CrossRefPubMedGoogle Scholar
  26. Meijer, H.G.E., Eissa, T.L., Kiewiet, B., Neuman, J.F., Schevon, C.A., Emerson, R.G., Goodman, R.R., McKhann, G.M., Marcuccilli, C.J., Tryba, A.K., Cowan, J.D., van Gils, S.A., & van Drongelen, W. (2015). Modeling focal epileptic activity in the Wilson-cowan model with depolarization block. Journal of Mathematical Neuroscience, 5, 7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Moody, W.J., Futamachi, K.J., & Prince, D.A. (1974). Extracellular potassium activity during epileptogenesis. Experimental Neurology, 42(2), 248–263.CrossRefPubMedGoogle Scholar
  28. Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Øyehaug, L., Østby, I., Lloyd, C.M., Omholt, S.W., & Einevoll, G.T. (2012). Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. Journal of Computational Neuroscience, 32(1), 147–165.CrossRefPubMedGoogle Scholar
  30. Prince, D.A., & Wilder, B.J. (1967). Control mechanisms in cortical epileptogenic foci. “Surround” inhibition. Archives of Neurology, 16(2), 194–202.CrossRefPubMedGoogle Scholar
  31. Quian Quiroga, R., Blanco, S., Rosso, O.A., Garcia, H., & Rabinowicz, A. (1997). Searching for hidden information with Gabor Transform in generalized tonic-clonic seizures. Electroencephalography and Clinical Neurophysiology, 103(4), 434–439.CrossRefPubMedGoogle Scholar
  32. Rinzel, J., & Ermentrout, G.B. (1989). Analysis of neural excitability and oscillations. In C.I. Koch, & E. Segev (Eds.), Methods in neuronal modeling (pp. 135–169). Cambridge: MIT Press. Scholar
  33. Scharfman, H.E., Sollas, A.L., Berger, R.E., & Goodman, J.H. (2003). Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting. Journal of Neurophysiology, 90(4), 2536– 2547.CrossRefPubMedGoogle Scholar
  34. Schevon, C.A., Weiss, S.A., McKhann, G., Goodman, R.R., Yuste, R., Emerson, R.G., & Trevelyan, A.J. (2012). Evidence of an inhibitory restraint of seizure activity in humans. Nature Communications, 3, 1060.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Schwartz, T.H., & Bonhoeffer, T. (2001). In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nature Medicine, 7(9), 1063–107.CrossRefPubMedGoogle Scholar
  36. Shin, D.S.H., Yu, W., Fawcett, A., & Carlen, P.L. (2010). Characterizing the persistent CA3 interneuronal spiking activity in elevated extracellular potassium in the young rat hippocampus. Brain Research, 1331, 39–50.CrossRefPubMedGoogle Scholar
  37. Somjen, G.G., & Giacchino, J.L. (1985). Potassium and calcium concentrations in interstitial fluid of hippocampal formation during paroxysmal responses. Journal of Neurophysiology, 53(4), 1098–1108.PubMedGoogle Scholar
  38. Sypert, G., & Ward, A. (1974). Changes in extracellular potassium activity during neocortical propagated seizures. Experimental Neurology, 45(1), 19–41.CrossRefPubMedGoogle Scholar
  39. Thompson, S.M., & Gahwiler, B.H. (1989). Activity-dependent disinhibition. ii. effects of extracellular potassium, furosemide, and membrane potential on ecl-in hippocampal ca3 neurons. Journal of Neurophysiology, 61(3), 512–523.PubMedGoogle Scholar
  40. Toyoda, I., Fujita, S., Thamattoor, A.K., & Buckmaster, P.S. (2015). Unit activity of hippocampal interneurons before spontaneous seizures in an animal model of temporal lobe epilepsy. Journal of Neuroscience, 35 (16), 6600–6618.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Traynelis, S.F., & Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. Journal of Neurophysiology, 59(1), 259–276.PubMedGoogle Scholar
  42. Trevelyan, A.J., & Schevon, C.A. (2013). How inhibition influences seizure propagation. Neuropharmacology, 69, 45–54.CrossRefPubMedGoogle Scholar
  43. Trevelyan, A.J., Sussillo, D., Watson, B.O., & Yuste, R. (2006). Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(48), 12447–12455.CrossRefGoogle Scholar
  44. Trevelyan, A.J., Sussillo, D., & Yuste, R. (2007). Feedforward inhibition contributes to the control of epileptiform propagation speed. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(13), 3383–3387.CrossRefGoogle Scholar
  45. Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1–24.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wuarin, J.P., & Dudek, F.E. (2001). Excitatory synaptic input to granule cells increases with time after kainate treatment. Journal of Neurophysiology, 85(3), 1067–1077.PubMedGoogle Scholar
  47. Yaari, Y., Konnerth, A., & Heinemann, U. (1986). Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. Journal of Neurophysiology, 56(2), 424–438.PubMedGoogle Scholar
  48. Yi, F., DeCan, E., Stoll, K., Marceau, E., Deisseroth, K., & Lawrence, J.J. (2015). Muscarinic excitation of parvalbumin-positive interneurons contributes to the severity of pilocarpine-induced seizures. Epilepsia, 56(2), 297–309.CrossRefPubMedGoogle Scholar
  49. Zandt, B.J., Visser, S., van Putten, M.J.A.M., & Ten Haken, B. (2014). A neural mass model based on single cell dynamics to model pathophysiology. Journal of Computational Neuroscience.Google Scholar
  50. Ziburkus, J., Cressman, J.R., Barreto, E., & Schiff, S.J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. Journal of Neurophysiology, 95(6), 3948–3954.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Laboratory of Biological Modeling, NIDDKNational Institute of HealthBethesdaUSA

Personalised recommendations