Journal of Computational Neuroscience

, Volume 42, Issue 3, pp 217–229 | Cite as

Mechanisms of circumferential gyral convolution in primate brains

  • Tuo Zhang
  • Mir Jalil Razavi
  • Hanbo Chen
  • Yujie Li
  • Xiao Li
  • Longchuan Li
  • Lei Guo
  • Xiaoping Hu
  • Tianming Liu
  • Xianqiao Wang


Mammalian cerebral cortices are characterized by elaborate convolutions. Radial convolutions exhibit homology across primate species and generally are easily identified in individuals of the same species. In contrast, circumferential convolutions vary across species as well as individuals of the same species. However, systematic study of circumferential convolution patterns is lacking. To address this issue, we utilized structural MRI (sMRI) and diffusion MRI (dMRI) data from primate brains. We quantified cortical thickness and circumferential convolutions on gyral banks in relation to axonal pathways and density along the gray matter/white matter boundaries. Based on these observations, we performed a series of computational simulations. Results demonstrated that the interplay of heterogeneous cortex growth and mechanical forces along axons plays a vital role in the regulation of circumferential convolutions. In contrast, gyral geometry controls the complexity of circumferential convolutions. These findings offer insight into the mystery of circumferential convolutions in primate brains.


Gyral convolution MRI Computational modeling Axon Heterogeneous growth 



T Zhang was supported by NSFC 31500798, NSFC 31671005. T Liu was supported by NSF CAREER Award (IIS-1149260), NIH R01 DA-033393, NIH R01 AG-042599, NSF CBET-1302089, NSF BCS-143905 and NSF DBI-1564736. X Wang and M Razavi were supported by the University of Georgia Start-up research funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Supplementary material

10827_2017_637_MOESM1_ESM.docx (4.2 mb)
ESM 1(DOCX 4264 kb)


  1. Bayly, P. V., Okamoto, R. J., Xu, G., Shi, Y., & Taber, L. A. (2013). A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Physical Biology, 10(1), 016005.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bayly, P. V., Taber, L. A., & Kroenke, C. D. (2014). Mechanical forces in cerebral cortical folding: A review of measurements and models. Journal of the Mechanical Behavior of Biomedical Materials, 29, 568–581.CrossRefPubMedGoogle Scholar
  3. Beck, K. D., Powell-Braxton, L., Widmer, H. R., Valverde, J., & Hefti, F. (1995). Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron, 14(4), 717–730.CrossRefPubMedGoogle Scholar
  4. Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, 34(1), 144–155.CrossRefPubMedGoogle Scholar
  5. Borrell, V., & Götz, M. (2014). Role of radial glial cells in cerebral cortex folding. Current Opinion in Neurobiology, 27C, 39–46.CrossRefGoogle Scholar
  6. Brown, M., Keynes, R., & Lumsden, A. (2002). The developing brain. Oxford: Oxford University Press.Google Scholar
  7. Budday, S., Steinmann, P., & Kuhl, E. (2014). The role of mechanics during brain development. Journal of the Mechanics and Physics of Solids., 72, 75–92.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Budde, M. D., & Annese, J. (2013). Quantification of anisotropy and fiber orientation in human brain histological sections. Frontiers in Integrative Neuroscience, 7, 3.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cao, Y., Jiang, Y., Li, B., & Feng, X. (2012). Biomechanical modeling of surface wrinkling of soft tissues with growth-dependent mechanical properties. Acta Mechanica Solida Sinica, 25, 483–492.CrossRefGoogle Scholar
  10. Cartwright, J. H. (2002). Labyrinthine turing pattern formation in the cerebral cortex. Journal of Theoretical Biology, 217(1), 97–103.CrossRefPubMedGoogle Scholar
  11. Caviness Jr., V. S. (1975). Mechanical model of brain convolutional development. Science, 189(4196), 18–21.CrossRefPubMedGoogle Scholar
  12. Chen, H., Guo, L., Nie, J., Zhang, T., Hu, X., & Liu, T. (2010). A dynamic skull model for simulation of cerebral cortex folding. Med Image Comput Comput Assist Interv., 13(2), 412–419.PubMedGoogle Scholar
  13. Chen, H., Zhang, T., Guo, L., Li, K., Yu, X., Li, L., Hu, X., Han, J., Hu, X., & Liu, T. (2013). Coevolution of gyral folding and structural connection patterns in primate brains. Cerebral Cortex, 23(5), 1208–1217.CrossRefPubMedGoogle Scholar
  14. Cunningham, D. J., & Horsley, V. (1892). Contribution to the surface anatomy of the cerebral hemispheres. Dublin: Royal Irish Academy.Google Scholar
  15. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.CrossRefPubMedGoogle Scholar
  16. Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53(1), 1–15.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Encha-Razavi, F., & Sonigo, P. (2003). Features of the developing brain. Child's Nervous System, 19, 426–428.CrossRefPubMedGoogle Scholar
  18. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fischl, B., Sereno, M., & Dale, A. (1999a). Cortical surface-based analysis-II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.CrossRefPubMedGoogle Scholar
  20. Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human brain mapping., 8, 272–284.CrossRefPubMedGoogle Scholar
  21. Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. Medical Imaging, IEEE Transactions on, 20, 70–80.CrossRefGoogle Scholar
  22. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., & Klaveness, S. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.CrossRefPubMedGoogle Scholar
  23. Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B. T. T., Mohlberg, H., Amunts, K., & Zilles, K. (2008). Cortical folding patterns and predicting cytoarchitecture. Cerebral Cortex., 18, 1973–1980.CrossRefPubMedGoogle Scholar
  24. Gaudillière, B., Konishi, Y., de la Iglesia, N., Gl, Y., & Bonni, A. (2004). A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron, 41(2), 229–241.CrossRefPubMedGoogle Scholar
  25. Geng, G., Johnston, L. A., Yan, E., Britto, J. M., Smith, D. W., Walker, D. W., & Egan, G. F. (2009). Biomechanisms for modelling cerebral cortical folding. Medical Image Analysis, 13(6), 920–930.CrossRefPubMedGoogle Scholar
  26. Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., Jenkinson, M., & Consortium, W. U.-M. H. C. P. (2013). The minimal preprocessing pipelines for the human connectome project. NeuroImage, 80, 105–124.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Götz, M., & Huttner, W. B. (2005). The cell biology of neurogenesis. Nature Reviews. Molecular Cell Biology, 6, 777–788.CrossRefPubMedGoogle Scholar
  28. Gratiolet, L. P. (1854). On the folding of cortical folding of the human and primates brain. Paris: Bertrand (Fre).Google Scholar
  29. Hilgetag, C. C., & Barbas, H. (2005). Developmental mechanics of the primate cerebral cortex. Anatomy and Embryology, 210(5–6), 411–417.CrossRefPubMedGoogle Scholar
  30. Holland, M. A., Miller, K. E., & Kuhl, E. (2015). Emerging brain morphologies from axonal elongation. Annals of Biomedical Engineering, 43(7), 1640–1653.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. Neuro Image, 62, 782–790.PubMedGoogle Scholar
  32. Jin, L., Cai, S., & Suo, Z. (2011). Creases in soft tissues generatsed by growth. EPL, 95, 64002.CrossRefGoogle Scholar
  33. Konishi, Y., Stegmüller, J., Matsuda, T., Bonni, S., & Bonni, A. (2004). Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science, 303(5660), 1026–1030.CrossRefPubMedGoogle Scholar
  34. Le Gros Clark, W. (1945). Deformation patterns on the cerebral cortex. In Essays on growth and form (pp. 1–23). Oxford: Oxford University Press.Google Scholar
  35. Leighton PA, Mitchell KJ, Goodrich LV, Lu X, Pinson K, Scherz P, Skarnes WC, Tessier-Lavigne M. (2001). Defining brain wiring patterns and mechanisms through gene trapping in mice. 410(6825):174–9.Google Scholar
  36. Li, G., Guo, L., Nie, J., & Liu, T. (2010). An automated pipeline for cortical sulcal fundi extraction. Medical Image Analysis, 14(3), 343–359.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li, G., Liu, T., Ni, D., Lin, W., Gilmore, J. H., & Shen, D. (2015). Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness. Human Brain Mapping., 36, 5183.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu T., Li H., Wong K., Tarokh A., Guo L., Wong S.T. (2007). Brain tissue segmentation based on DTI data. Neuroimage. 38(1),114–23.Google Scholar
  39. Liu T., Nie J., Tarokh A., Guo L., Wong S.T. (2008). Reconstruction of central cortical surface from brain MRI images: Method and application. Neuroimage. 40(3):991-1002.Google Scholar
  40. Nie, J., Guo, L., Li, K., Wang, Y., Chen, G., Li, L., Chen, H., Deng, F., Jiang, X., Zhang, T., Huang, L., Faraco, C., Zhang, D., Guo, C., Yap, P. T., Hu, X., Li, G., Lv, J., Yuan, Y., Zhu, D., Han, J., Sabatinelli, D., Zhao, Q., Miller, L. S., Xu, B., Shen, P., Platt, S., Shen, D., Hu, X., & Liu, T. (2012). Axonal fiber terminations concentrate on gyri. Cerebral Cortex, 22(12), 2831–2839.CrossRefPubMedGoogle Scholar
  41. Raghavan, R., Lawton, W., Ranjan, S. R., & Viswanathan, R. R. (1997). A continuum mechanics-based model for cortical growth. Journal of Theoretical Biology., 187(2), 285–296.CrossRefGoogle Scholar
  42. Razavi, M. J., & Wang, X. (2015c). Morphological patterns of a growing biological tube in a confined environment with contacting boundary. RSC Advances, 5, 7440–7449.CrossRefGoogle Scholar
  43. Razavi, M. J., Zhang, T., Liu, T., & Wang, X. (2015a). Cortical folding pattern and its consistency induced by biological growth. Scientific Reports., 5, 14477.CrossRefPubMedGoogle Scholar
  44. Razavi, M. J., Zhang, T., Li, X., Liu, T., & Wang, X. (2015b). Role of mechanical factors in cortical folding development. Physical Review E, 92, 032701.CrossRefGoogle Scholar
  45. Régis, J., Mangin, J. F., Ochiai, T., Frouin, V., Riviére, D., Cachia, A., Tamura, M., & Samson, Y. (2005). "sulcal root" generic model: A hypothesis to overcome the variability of the human cortex folding patterns. Neurologia Medico-Chirurgica (Tokyo), 45(1), 1–17.CrossRefGoogle Scholar
  46. Richman, D. P., Stewart, R. M., Hutchinson, J. W., & Caviness, V. S. (1975). Mechanical model of brain convolutional development. Science, 189(4196), 18–21.CrossRefPubMedGoogle Scholar
  47. Ronan, L., Voets, N., Rua, C., Alexander-Bloch, A., Hough, M., Mackay, C., Crow, T. J., James, A., Giedd, J. N., & Fletcher, P. C. (2014). Differential tangential expansion as a mechanism for cortical gyrification. Cerebral Cortex, 24(8), 2219–2228.CrossRefPubMedGoogle Scholar
  48. Ségonne, F., Grimson, E., Fischl, B. (2005). Information Processing in Medical Imaging. In A genetic algorithm for the topology correction of cortical surfaces (pp. 213–259). Springer.Google Scholar
  49. Sidman, R. L., & Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62, 1–35.CrossRefPubMedGoogle Scholar
  50. Stahl, R., Walcher, T., De Juan, R. C., Pilz, G. A., Cappello, S., Irmler, M., Sanz-Aquela, J. M., Beckers, J., Blum, R., Borrell, V., & Götz, M. (2013). Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell, 153(3), 535–549.CrossRefPubMedGoogle Scholar
  51. Sun, T., & Hevner, R. F. (2014). Growth and folding of the mammalian cerebral cortex: From molecules to malformations. Nature Reviews. Neuroscience, 15(4), 217–232.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sur, M., & Rubenstein, J. L. R. (2005). Patterning and plasticity of the cerebral cortex. Science, 310, 805–810.CrossRefPubMedGoogle Scholar
  53. Tallinen, T., Chung, J. Y., Biggins, J. S., & Mahadevan, L. (2014). Gyrification from constrained cortical expansion. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12667–12672.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Toro, R., & Burnod, Y. (2005). A morphogenetic model for the development of cortical convolutions. Cerebral Cortex., 15(12), 1900–1913.CrossRefPubMedGoogle Scholar
  55. Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385, 313–318.CrossRefPubMedGoogle Scholar
  56. White, T., Andreasen, N., & Nopoulos, P. (2002). Brain volumes and surface morphology in monozygotic twins. Cerebral Cortex, 12, 486–493.CrossRefPubMedGoogle Scholar
  57. Xu, G., Bayly, P. V., & Taber, L. A. (2009). Residual stress in the adult mouse brain. Biomechanics and Modeling in Mechanobiology, 8(4), 253–262.CrossRefPubMedGoogle Scholar
  58. Xu, G., Knutsen, A. K., Dikranian, K., Kroenke, C. D., Bayly, P. V., & Taber, L. A. (2010). Axons pull on the brain, but tension does not drive cortical folding. Journal of Biomechanical Engineering, 132(7), 071013.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Tuo Zhang
    • 1
    • 2
  • Mir Jalil Razavi
    • 3
  • Hanbo Chen
    • 2
  • Yujie Li
    • 2
  • Xiao Li
    • 1
  • Longchuan Li
    • 4
  • Lei Guo
    • 1
  • Xiaoping Hu
    • 4
  • Tianming Liu
    • 2
  • Xianqiao Wang
    • 3
  1. 1.School of Automation and Brain Decoding Research CenterNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensUSA
  3. 3.College of EngineeringThe University of GeorgiaAthensUSA
  4. 4.Biomedical Imaging Technology CenterEmory UniversityAtlantaUSA

Personalised recommendations