Journal of Computational Neuroscience

, Volume 41, Issue 3, pp 367–391 | Cite as

Linking dynamics of the inhibitory network to the input structure

  • Maxim Komarov
  • Maxim BazhenovEmail author


Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives.


Inhibitory neurons Information coding Neural network Olfactory system Spike sequences Odor discrimination 



This study was supported by grants from NIDCD (R01 DC012943) and ONR (MURI: N000141310672). We thank Andrey Shilnikov and Mark Stopfer for fruitful discussions.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. Assisi, C., & Bazhenov, M. (2012). Synaptic inhibition controls transient oscillatory synchronization in a model of the insect olfactory system. Frontiers in neuroengineering, 5(7).Google Scholar
  2. Assisi, C., Stopfer, M., & Bazhenov, M. (2011). Using the structure of inhibitory networks to unravel mechanisms of spatiotemporal patterning. Neuron, 69(2), 373–86.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bal, T., & Mccormick, D.A. (1993). Mechanisms of oscillatory activity in guinea-pig nucleus reticular thalami in vitro: a mammalian pacemaker. Journal of Physiology, 468, 669–691.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bazhenov, M., & Stopfer, M. (2010). Forward and back: motifs of inhibition in olfactory processing. Neuron, 67, 357–358.PubMedCrossRefGoogle Scholar
  5. Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T.J. (1999). Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials. Nature neuroscience, 2(2), 168–174.PubMedCrossRefGoogle Scholar
  6. Bazhenov, M., Stopfer, M., Rabinovich, M., Abarbanel, H.D., Sejnowski, T.J., & Laurent, G. (2001). Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron, 30(2), 569–81.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beierlein, M., Gibson, J.R., & Connors, B.W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of neurophysiology, 90(2003), 2987–3000.PubMedCrossRefGoogle Scholar
  8. Beggs, J.M. (2004). Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures. Journal of Neuroscience, 24(22), 5216–5229.PubMedCrossRefGoogle Scholar
  9. Beggs, J.M., & Plenz, D. (2003). Neuronal Avalanches in Neocortical Circuits. The Journal of Neuroscience, 23(35), 11167–11177.PubMedGoogle Scholar
  10. Belykh, I., & Shilnikov, A. (2008). When Weak Inhibition Synchronizes Strongly Desynchronizing Networks of Bursting Neurons. Physical Review Letters, 101(7), 078102.PubMedCrossRefGoogle Scholar
  11. Benda, J., & Herz, A.V.M. (2003). A universal model for spike-frequency adaptation. Neural computation, 15(11), 2523–64.PubMedCrossRefGoogle Scholar
  12. Bonifazi, P., Goldin, M., Picardo, M.A., Jorquera, I., Cattani, A., Bianconi, G., & et al. (2009). GABAergic hub neurons orchestrate synchrony in developing hippocampal network. Science (New York, N.Y.), 326, 1419–1424.CrossRefGoogle Scholar
  13. Bouyer, J.J., Montaron, M.F., Vahnėe, J M, Albert, M.P., & Rougeul, A. (1987). Anatomical localization of cortical beta rhythms in cat. Neuroscience, 22(3), 863–869.PubMedCrossRefGoogle Scholar
  14. Buhl, E.H., Tamás, G, & Fisahn, A. (1998). Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. The Journal of physiology, 513, 117–126.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cheng, S., & Frank, L.M. (2008). New Experiences Enhance Coordinated Neural Activity in the Hippocampus. Neuron, 57(2), 303–313.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cinelli, A.R., & Kauer, J.S. (1992). Voltage-sensitive dyes and functional activity in the olfactory pathway. Annual review of neuroscience, 15, 321–351.PubMedCrossRefGoogle Scholar
  17. Cinelli, A.R., Hamilton, K.A., & Kauer, J.S. (1995). Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. Journal of neurophysiology, 73(5), 2053–2071.PubMedGoogle Scholar
  18. Collins, J.J., & bifurcation, Stewart IN Symmetry-breaking (1992). A possible mechanism for 2:1 frequency locking in animal locomotion. J. Math. Biol., 30, 827–838.PubMedCrossRefGoogle Scholar
  19. Daun, S., Rubin, J.E., & Rybak, I.A (2009). Control of oscillation periods and phase durations in half-center central pattern generators: A comparative mechanistic analysis. Journal of Computational Neuroscience, 27, 3–36.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature reviews Neuroscience, 11(2), 114–126.PubMedGoogle Scholar
  21. Diesmann, M., Gewaltig, M.O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533.PubMedCrossRefGoogle Scholar
  22. Ermentrout, B. (1992). Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Networks, 5(1), 415–431.CrossRefGoogle Scholar
  23. Ermentrout, G.B., & Kopell, N. (1994). Inhibition-Produced Patterning in Chains of Coupled Nonlinear Oscillators. SIAM Journal on Applied Mathematics, 54, 478–507.CrossRefGoogle Scholar
  24. Freund, T.F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.PubMedCrossRefGoogle Scholar
  25. Friedrich, R.W., & Stopfer, M. (2001). Recent dynamics in olfactory population coding. Current Opinion in Neurobiology, 11, 468–474.PubMedCrossRefGoogle Scholar
  26. Friedrich, R.W., & Laurent, G. (2004). Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. Journal of neurophysiology, 91(6), 2658–69.PubMedCrossRefGoogle Scholar
  27. Foster, D.J., & Ma, W. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680–683.PubMedCrossRefGoogle Scholar
  28. Gabriel, A., & Eckhorn, R. (2003). A multi-channel correlation method detects traveling γ-waves in monkey visual cortex. Journal of Neuroscience Methods, 131(1-2), 171–184.PubMedCrossRefGoogle Scholar
  29. Gray, C.M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. PNAS, 86, 1698–1702.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal networks. Nature Reviews Neuroscience, 4(7), 573–586.PubMedCrossRefGoogle Scholar
  31. Golomb, D., & Ermentrout, G.B. (2001). Bistability in pulse propagation in networks of excitatory and inhibitory populations. Physical Review Letters, 86(18), 4179–4182.PubMedCrossRefGoogle Scholar
  32. Golomb, D., Wang, X.J., & Rinzel, J. (1994). Synchronization Properties of Spindle Oscillations in a Thalamic Reticular Nucleus Model. Journal of neurophysiology, 72(3), 1109–1126.PubMedGoogle Scholar
  33. Golubitsky, M. (1985). Stewart I Hopf bifurcation in the presence of symmetry Archive for Rational Mechanics and Analysis, (Vol. 87.Google Scholar
  34. Golubitsky, M., Stewart, I., Buono, P.-L., & Collins, J.J. (1998). A modular network for legged locomotion Physica D, (Vol. 115.Google Scholar
  35. Hebb, D.O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  36. Hosler, J.S., Buxton, K.L., & Smith, B.H. (2000). Impairment of olfactory discrimination by blockade of GABA and nitric oxide activity in the honey bee antennal lobes. Behavioral Neuroscience, 114, 514–525.PubMedCrossRefGoogle Scholar
  37. Ito, I., Bazhenov, M., Ong, R.C.Y., Raman, B., & Stopfer, M. (2009). Frequency Transitions in Odor-Evoked Neural Oscillations. Neuron, 64(5), 692–706.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., & Ermentrout, B. (2005). On the human sensorimotor-cortex beta rhythm: Sources and modeling. NeuroImage, 26(2), 347–355.PubMedCrossRefGoogle Scholar
  39. Ji, D., & Wilson, M.A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature neuroscience, 10(1), 100–107.PubMedCrossRefGoogle Scholar
  40. Jones, L.M., Fontanini, A., Sadacca, B.F., Miller, P., & Katz, D.B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. PNAS, 104(47), 18772–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Joseph, J., Dunn, F.A., & Stopfer, M. (2012). Spontaneous Olfactory Receptor Neuron Activity Determines Cell Response Properties. The Journal of neuroscience, 32(8), 2900–2910.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kawaguchi, Y., & Kubota, Y. (1993). Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. Journal of neurophysiology, 70(1), 387–396.PubMedGoogle Scholar
  43. Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486.PubMedCrossRefGoogle Scholar
  44. Kawaguchi, Y., & Kubota, Y. (1998). Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience, 85(3), 677–701.PubMedCrossRefGoogle Scholar
  45. Kilpatrick, ZP, & Ermentrout, B (2011). Sparse gamma rhythms arising through clustering in adapting neuronal networks. PLoS Computational Biology, 7(11), e1002281.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kisvarday, Z.F., Beaulieu, C., & Eysel, U.T. (1993). Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition. Journal of Comparative Neurology, 327, 398–415.PubMedCrossRefGoogle Scholar
  47. Komarov, M.A., Osipov, G.V., & Suykens, J.A.K. (2009). Sequentially activated groups in neural networks. EPL (Europhysics Letters), 86(6), 60006.CrossRefGoogle Scholar
  48. Komarov, M.A., Osipov, G.V., Suykens, J.A.K., & Rabinovich, M.I. (2009). Numerical studies of slow rhythms emergence in neural microcircuits: Bifurcations and stability. Chaos, 19, 015107.PubMedCrossRefGoogle Scholar
  49. Lam, Y.W., Cohen, L.B., Wachowiak, M., & Zochowski, M.R. (2000). Odors elicit three different oscillations in the turtle olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience, 20(2), 749–762.Google Scholar
  50. Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature reviews Neuroscience, 3(11), 884–95.PubMedCrossRefGoogle Scholar
  51. Laurent, G., & Davidowitz, H. (1994). Encoding of olfactory information with oscillating neural assemblies. Science, 265(5180), 1872–5.PubMedCrossRefGoogle Scholar
  52. Laurent, G., Wehr, M., & Davidowitz, H. (1996). Temporal Representations of Odors in an Olfactory. The Journal of Neuroscuence, 16(12), 3837–3847.Google Scholar
  53. Lee, A.K., & Wilson, M.A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36(6), 1183–1194.PubMedCrossRefGoogle Scholar
  54. Leitch, B., & Laurent, G. (1993). Distribution of GABAergic synaptic terminals on the dendrites of locust spiking local interneurones. J Comp Neurol, 337(3), 461–470.PubMedCrossRefGoogle Scholar
  55. Leitch, B., & Laurent, G. (1996). GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. Journal of Comparative Neurology, 372(4), 487–514.PubMedCrossRefGoogle Scholar
  56. Lewis, T.J., & Rinzel, J. (2003). Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling. Journal of Computational Neuroscience, 14, 283–309.PubMedCrossRefGoogle Scholar
  57. Louie, K., & Wilson, M.A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.PubMedCrossRefGoogle Scholar
  58. MacLeod, K., Bäcker, A, & Laurent, G. (1998). Who reads temporal information contained across synchronized and oscillatory spike trains Nature, 395(6703), 693–698.PubMedCrossRefGoogle Scholar
  59. Marder, E., & Calabrese, R.L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76(3), 687–717.PubMedGoogle Scholar
  60. Matveev, V., Bose, A., & Nadim, F. (2007). Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map. Journal of Computational Neuroscience, 23, 169–187.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Nowotny, T., & Rabinovich, M.I. (2007). Dynamical origin of independent spiking and bursting activity in neural microcircuits. Physical Review Letters, 98(March), 1–4.Google Scholar
  62. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research, 34(1), 171–175.PubMedCrossRefGoogle Scholar
  63. Pinto, D.J., & Ermentrout, G.B. (2001). Spatially Structured Activity in Synaptically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.CrossRefGoogle Scholar
  64. Rabinovich, M.I., Huerta, R., Varona, P., & Afraimovich, V.S. (2006). Generation and reshaping of sequences in neural systems. Biological Cybernetics, 95, 519–536.PubMedCrossRefGoogle Scholar
  65. Rinzel, J., Terman, D., Wang, X., & Ermentrout, B. (1998). Propagating activity patterns in large-scale inhibitory neuronal networks. Science (New York, NY), (Vol. 279.Google Scholar
  66. Schoppa, N.E. (2006). Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs. Neuron, 49, 271–283.PubMedCrossRefGoogle Scholar
  67. Schwabedal, J.T.C., Neiman, A.B., & Shilnikov, A.L. (2014). Robust design of polyrhythmic neural circuits. Physical Review E, 90(2), 022715.CrossRefGoogle Scholar
  68. Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research Reviews, 8, 1–63.CrossRefGoogle Scholar
  69. Steriade, M., Jones, E., & McCormick, D. (1997). Thalamus: organization and function. Oxford: Elsevier Science Ltd.Google Scholar
  70. Stopfer, M., Bhagavan, S., Smith, B.H., & Laurent, G. (1997). Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature, 390(6655), 70–74.PubMedCrossRefGoogle Scholar
  71. Terman, D., Kopell, N., & Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D: Nonlinear Phenomena, 117, 241–275.CrossRefGoogle Scholar
  72. Traub, R.D. (1982). Simulation of intrinsic bursting in CA3. The Journal of Neuroscuence, 7(5), 1233–1242.CrossRefGoogle Scholar
  73. Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network: Computation in Neural Systems, 4, 259–284.CrossRefGoogle Scholar
  74. Ulrich, D., & Huguenard, J.R. (1997). GABA(A)-receptor-mediated rebound burst firing and burst shunting in thalamus. Journal of neurophysiology, 78(3), 1748–1751.PubMedGoogle Scholar
  75. Van Vreeswijk, C., Abott, L.F., & Ermentrout, G.B. (1994). When Inhibition not Excitation Synchronizes Neural Firing. Journal of Computational Neuroscience, 1, 313.PubMedCrossRefGoogle Scholar
  76. Von Krosigk, M., Bal, T., & McCormick, D.A. (1993). Cellular mechanisms of a synchronized oscillations in the thalamus. Science, 261, 361.PubMedCrossRefGoogle Scholar
  77. Wang, X.J., & Rinzel, J. (1992). Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons.Google Scholar
  78. Wang, X.J., & Rinzel, J. (1993). Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience, 53(4), 899–904.PubMedCrossRefGoogle Scholar
  79. Wang, X.J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of neuroscience : the official journal of the Society for Neuroscience, 16(20), 6402–6413.Google Scholar
  80. Wang, Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silderberg, G., Luo, J., & Markram, H. (2004). Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. Journal of Physiology, 561(1), 65–90.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Warren, B., & Kloppenburg, P. (2014). Rapid and Slow Chemical Synaptic Interactions of Cholinergic Projection Neurons and GABAergic Local Interneurons in the Insect Antennal Lobe. Journal of Neuroscience, 34 (39), 13039–13046.PubMedCrossRefGoogle Scholar
  82. Wehr, M., & Laurent, G. (1996). Odors encoding by temporal sequences of firing in oscillating neural assemblies. Nature, 384, 162–166.PubMedCrossRefGoogle Scholar
  83. Wojcik, J., Schwabedal, J., Clewley, R., & Shilnikov, A.L. (2014). Key bifurcations of bursting polyrhythms in 3-cell central pattern generators. PloS one, 9(4), e92918.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Yoshimura, Y., & Callaway, E.M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature neuroscience, 8(11), 1552–1559.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MedicineUniversity of California San DiegoLa JollaUSA
  2. 2.Department of Physics and AstronomyUniversity of PotsdamPotsdamGermany
  3. 3.Department of Control TheoryNizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations