Journal of Computational Neuroscience

, Volume 40, Issue 2, pp 207–229 | Cite as

A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease

  • Karthik Kumaravelu
  • David T. Brocker
  • Warren M. Grill
Article

Abstract

Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson’s disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

Keywords

Deep brain stimulation Parkinson’s disease 6-OHDA lesioned rat model Subthalamic nucleus Computational model Pathological oscillatory activity 

Notes

Acknowledgments

This work was supported by grants from the US National Institutes of Health (NIH R37 NS040894 and NIH R01 NS079312). The authors would like to thank the Duke Shared Cluster Resource team for computational support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agid, Y., Javoy-Agid, F., & Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. Movement Disorders, 2(7), 166–230.Google Scholar
  2. Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.CrossRefPubMedGoogle Scholar
  3. Anderson, M. E., Postupna, N., & Ruffo, M. (2003). Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. Journal of Neurophysiology, 89(2), 1150–1160.CrossRefPubMedGoogle Scholar
  4. Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., & Bevan, M. D. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.PubMedGoogle Scholar
  6. Birdno, M. J., & Grill, W. M. (2008). Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics, 5(1), 14–25.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blesa, J., & Przedborski, S. (2014). Parkinson’s disease: animal models and dopaminergic cell vulnerability. Frontiers in Neuroanatomy, 8.Google Scholar
  8. Bolam, J., Hanley, J., Booth, P., & Bevan, M. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy, 196(04), 527–542.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bosch, C., Degos, B., Deniau, J.-M., & Venance, L. (2011). Subthalamic nucleus high-frequency stimulation generates a concomitant synaptic excitation–inhibition in substantia nigra pars reticulata. The Journal of Physiology, 589(17), 4189–4207.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brocker, D.T., Swan, B.D., Turner, D.A., Gross, R.E., Tatter, S.B., Miller Koop, M., . . . Grill, W.M. (2013). Improved efficacy of temporally non-regular deep brain stimulation in Parkinson’s disease. Experimental Neurology, 239, 60–67.Google Scholar
  11. Brown, D. A. (2010). Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. Journal of Molecular Neuroscience, 41(3), 340–346.CrossRefPubMedGoogle Scholar
  12. Chang, H., & Kitai, S. (1985). Projection neurons of the nucleus accumbens: an intracellular labeling study. Brain Research, 347(1), 112–116.CrossRefPubMedGoogle Scholar
  13. Chang, H., Wilson, C., & Kitai, S. (1982). A Golgi study of rat neostriatal neurons: light microscopic analysis. Journal of Comparative Neurology, 208(2), 107–126.CrossRefPubMedGoogle Scholar
  14. Cruz, A. V., Mallet, N., Magill, P. J., Brown, P., & Averbeck, B. B. (2012). Effects of dopamine depletion on information flow. PNAS, 109(44), 18126–18131.CrossRefGoogle Scholar
  15. Degos, B., Deniau, J.-M., Thierry, A.-M., Glowinski, J., Pezard, L., & Maurice, N. (2005). Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. The Journal of Neuroscience, 25(33), 7687–7696.CrossRefPubMedGoogle Scholar
  16. DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.CrossRefPubMedGoogle Scholar
  17. Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100(5), 2807–2818.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Farries, M. A., Kita, H., & Wilson, C. J. (2010). Dynamic spike threshold and zero membrane slope conductance shape the response of subthalamic neurons to cortical input. The Journal of Neuroscience, 30(39), 13180–13191.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fogelson, N., Kühn, A.A., Silberstein, P., Limousin, P.D., Hariz, M., Trottenberg, T., . . . Brown, P. (2005). Frequency dependent effects of subthalamic nucleus stimulation in Parkinson’s disease. Neuroscience Letters, 382(1), 5–9.Google Scholar
  20. Fujimoto, K., & Kita, H. (1993). Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Research, 609(1), 185–192.CrossRefPubMedGoogle Scholar
  21. Götz, T., Kraushaar, U., Geiger, J., Lübke, J., Berger, T., & Jonas, P. (1997). Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. The Journal of Neuroscience, 17(1), 204–215.PubMedGoogle Scholar
  22. Grill, W. M., Snyder, A. N., & Miocinovic, S. (2004). Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport, 15(7), 1137–1140.CrossRefPubMedGoogle Scholar
  23. Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28(3), 425–441.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.CrossRefPubMedGoogle Scholar
  25. Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience, 23(5), 1916–1923.PubMedGoogle Scholar
  26. Hollerman, J. R., & Grace, A. A. (1992). Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Research, 590(1), 291–299.CrossRefPubMedGoogle Scholar
  27. Hornykiewicz, O. (1998). Biochemical aspects of Parkinson’s disease. Neurology, 51(2 Suppl 2), S2–S9.CrossRefPubMedGoogle Scholar
  28. Humphries, M. D., & Gurney, K. (2012). Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output. European Journal of Neuroscience, 36(2), 2240–2251.CrossRefPubMedGoogle Scholar
  29. Ikarashi, Y., Takahashi, A., Ishimaru, H., Arai, T., & Maruyama, Y. (1997). Regulation of Dopamine D1 and D2 Receptors on Striatal Acetylcholine Release in Rats. Brain Research Bulletin, 43(1), 107–115.CrossRefPubMedGoogle Scholar
  30. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.CrossRefPubMedGoogle Scholar
  31. Jankovic, J., Rajput, A. H., McDermott, M. P., & Perl, D. P. (2000). The evolution of diagnosis in early Parkinson disease. Archives of Neurology, 57(3), 369–372.CrossRefPubMedGoogle Scholar
  32. Kang, G., & Lowery, M. M. (2013). Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 244–253.CrossRefPubMedGoogle Scholar
  33. Kita, H. (2001). Neostriatal and globus pallidus stimulation induced inhibitory postsynaptic potentials in entopeduncular neurons in rat brain slice preparations. Neuroscience, 105(4), 871–879.CrossRefPubMedGoogle Scholar
  34. Kita, H., & Kita, T. (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. The Journal of Neuroscience, 31(28), 10311–10322.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kita, H., & Kitai, S. (1991). Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564(2), 296–305.CrossRefPubMedGoogle Scholar
  36. Kühn, A.A., Kempf, F., Brücke, C., Doyle, L.G., Martinez-Torres, I., Pogosyan, A., . . . Hariz, M.I. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. The Journal of Neuroscience, 28(24), 6165–6173.Google Scholar
  37. Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.CrossRefPubMedGoogle Scholar
  38. Li, Q., Ke, Y., Chan, D.C., Qian, Z.-M., Yung, K.K., Ko, H., . . . Yung, W.-H. (2012). Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron, 76(5), 1030–1041.Google Scholar
  39. Mallet, N., Ballion, B., Le Moine, C., & Gonon, F. (2006). Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. The Journal of Neuroscience, 26(14), 3875–3884.CrossRefPubMedGoogle Scholar
  40. Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008a). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. The Journal of Neuroscience, 28(52), 14245–14258.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mallet, N., Pogosyan, A., Sharott, A., Csicsvari, J., Bolam, J. P., Brown, P., & Magill, P. J. (2008b). Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. The Journal of Neuroscience, 28(18), 4795–4806.CrossRefPubMedGoogle Scholar
  42. Marsden, C., Parkes, J., & Quinn, N. (1982). Fluctuations of disability in Parkinson’s disease: clinical aspects. Movement disorders. London: Butterworth, 198(1), 96–122.Google Scholar
  43. McCarthy, M., Moore-Kochlacs, C., Gu, X., Boyden, E., Han, X., & Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences, 108(28), 11620–11625.CrossRefGoogle Scholar
  44. McConnell, G. C., So, R. Q., Hilliard, J. D., Lopomo, P., & Grill, W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. The Journal of Neuroscience, 32(45), 15657–15668.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Miguelez, C., Morin, S., Martinez, A., Goillandeau, M., Bezard, E., Bioulac, B., & Baufreton, J. (2012). Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. The Journal of Physiology, 590(22), 5861–5875.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7(8), e1002124.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Moro, E., Lozano, A.M., Pollak, P., Agid, Y., Rehncrona, S., Volkmann, J., . . . Hariz, M.I. (2010). Long‐term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Movement Disorders, 25(5), 578–586.Google Scholar
  48. Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.CrossRefPubMedGoogle Scholar
  49. Nakanishi, H., Kita, H., & Kitai, S. (1991). Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation. Brain Research, 549(2), 285–291.CrossRefPubMedGoogle Scholar
  50. Nambu, A., Tokuno, H., Hamada, I., Kita, H., Imanishi, M., Akazawa, T., . . . Hasegawa, N. (2000). Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. Journal of Neurophysiology, 84(1), 289–300.Google Scholar
  51. Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’pathway. Neuroscience Research, 43(2), 111–117.CrossRefPubMedGoogle Scholar
  52. Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.CrossRefPubMedGoogle Scholar
  53. Otsuka, T., Abe, T., Tsukagawa, T., & Song, W.-J. (2004). Conductance-based model of the voltage-dependent generation of a plateau potential in subthalamic neurons. Journal of Neurophysiology, 92(1), 255–264.CrossRefPubMedGoogle Scholar
  54. Pan, M.-K., Tai, C.-H., Liu, W.-C., Pei, J.-C., Lai, W.-S., & Kuo, C.-C. (2014). Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits. The Journal of Clinical Investigation, 124(10), 4629.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pang, Z., Ling, G. Y., Gajendiran, M., & Xu, Z. C. (2001). Enhanced excitatory synaptic transmission in spiny neurons of rat striatum after unilateral dopamine denervation. Neuroscience Letters, 308(3), 201–205.CrossRefPubMedGoogle Scholar
  56. Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.CrossRefPubMedGoogle Scholar
  57. Quinn, N., Luthert, P., Honavar, M., & Marsden, C. (1989). Pure akinesia due to Lewy body Parkinson’s disease: a case with pathology. Movement Disorders, 4(1), 85–89.CrossRefPubMedGoogle Scholar
  58. Rajput, A., Sitte, H., Rajput, A., Fenton, M., Pifl, C., & Hornykiewicz, O. (2008). Globus pallidus dopamine and Parkinson motor subtypes Clinical and brain biochemical correlation. Neurology, 70(16 Part 2), 1403–1410.CrossRefPubMedGoogle Scholar
  59. Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571.PubMedGoogle Scholar
  60. Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.CrossRefPubMedGoogle Scholar
  61. Ryu, S.B., Bae, E.K., Kim, J., Hwang, Y.S., Im, C., Chang, J.W., . . . Kim, K.H. (2013). Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson’s Disease Model Rats. The Korean Journal of Physiology & Pharmacology, 17(4), 299–306.Google Scholar
  62. Shaw, F.-Z., & Liao, Y.-F. (2005). Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats. Journal of Neurophysiology, 93(5), 2435–2448.CrossRefPubMedGoogle Scholar
  63. Sims, R. E., Woodhall, G. L., Wilson, C. L., & Stanford, I. M. (2008). Functional characterization of GABAergic pallidopallidal and striatopallidal synapses in the rat globus pallidus in vitro. European Journal of Neuroscience, 28(12), 2401–2408.CrossRefPubMedGoogle Scholar
  64. So, R. Q., Kent, A. R., & Grill, W. M. (2012a). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of Computational Neuroscience, 32(3), 499–519.CrossRefPubMedPubMedCentralGoogle Scholar
  65. So, R. Q., McConnell, G. C., August, A. T., & Grill, W. M. (2012b). Characterizing effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling behavior in hemi-Parkinsonian rats. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(5), 626–635.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Taverna, S., Ilijic, E., & Surmeier, D. J. (2008). Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease. The Journal of Neuroscience, 28(21), 5504–5512.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., . . . Schnitzler, A. (2004). Ten‐Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement disorders, 19(11), 1328–1333.Google Scholar
  68. Tremblay, L., & Filion, M. (1989). Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism. Brain Research, 498(1), 17–33.CrossRefPubMedGoogle Scholar
  69. Walker, H.C., Huang, H., Gonzalez, C.L., Bryant, J.E., Killen, J., Knowlton, R.C., . . . Guthrie, B.L. (2012). Short latency activation of cortex by clinically effective thalamic brain stimulation for tremor. Movement Disorders, 27(11), 1404–1412.Google Scholar
  70. Weaver, F.M., Follett, K., Stern, M., Hur, K., Harris, C., Marks, W.J., . . . Moy, C.S. (2009). Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA, 301(1), 63–73.Google Scholar
  71. Wichmann, T., & Soares, J. (2006). Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. Journal of Neurophysiology, 95(4), 2120–2133.CrossRefPubMedGoogle Scholar
  72. Xu, W., Russo, G. S., Hashimoto, T., Zhang, J., & Vitek, J. L. (2008). Subthalamic nucleus stimulation modulates thalamic neuronal activity. The Journal of Neuroscience, 28(46), 11916–11924.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yamawaki, N., Stanford, I. M., Hall, S. D., & Woodhall, G. L. (2008). Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro. Neuroscience, 151(2), 386–395.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karthik Kumaravelu
    • 1
  • David T. Brocker
    • 1
  • Warren M. Grill
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA
  3. 3.Department of NeurobiologyDuke UniversityDurhamUSA
  4. 4.Department of SurgeryDuke UniversityDurhamUSA

Personalised recommendations