Journal of Computational Neuroscience

, Volume 40, Issue 1, pp 65–82 | Cite as

Molecular variability elicits a tunable switch with discrete neuromodulatory response phenotypes

  • Warren D. Anderson
  • Hirenkumar K. Makadia
  • Rajanikanth VadigepalliEmail author


Recent single cell studies show extensive molecular variability underlying cellular responses. We evaluated the impact of molecular variability in the expression of cell signaling components and ion channels on electrophysiological excitability and neuromodulation. We employed a computational approach that integrated neuropeptide receptor-mediated signaling with electrophysiology. We simulated a population of neurons in which expression levels of a neuropeptide receptor and multiple ion channels were simultaneously varied within a physiological range. We analyzed the effects of variation on the electrophysiological response to a neuropeptide stimulus. Our results revealed distinct response patterns associated with low versus high receptor levels. Neurons with low receptor levels showed increased excitability and neurons with high receptor levels showed reduced excitability. These response patterns were separated by a narrow receptor level range forming a separatrix. The position of this separatrix was dependent on the expression levels of multiple ion channels. To assess the relative contributions of receptor and ion channel levels to the response profiles, we categorized the responses into six phenotypes based on response kinetics and magnitude. We applied several multivariate statistical approaches and found that receptor and channel expression levels influence the neuromodulation response phenotype through a complex though systematic mapping. Our analyses extended our understanding of how cellular responses to neuromodulation vary as a function of molecular expression. Our study showed that receptor expression and biophysical state interact with distinct relative contributions to neuronal excitability.


Neuromodulation Biophysics Neurophysiology Dynamical system 



This study was supported by National Heart, Lung, and Blood Institute grant No. R01 HL111621 to RV.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interest

Supplementary material

10827_2015_584_MOESM1_ESM.pdf (11.2 mb)
(PDF 11.1 MB)


  1. Accorsi-Mendonca, D., & Machado, B. (2013). Autonomic Neuroscience: Basic & Clinical, 175, 3.CrossRefGoogle Scholar
  2. Anirudhan, A., & Narayanan, R. (2015). The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(11), 4691.CrossRefGoogle Scholar
  3. Azar, T., Sharp, J., & Lawson, D. (2011). Journal of the American Association for Laboratory Animal Science : JAALAS, 50(2), 175.PubMedCentralPubMedGoogle Scholar
  4. Bhalla, U.S., & Bower, J.M. (1993). Journal of Neurophysiology, 69(6), 1948.PubMedGoogle Scholar
  5. Bhalla, U.S., & Iyengar, R. (1999). Science (New York, N.Y.), 283(5400), 381.CrossRefGoogle Scholar
  6. Cannon, R.C., & D’Alessandro, G. (2006). PLoS Computational Biology, 2(8), e91.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cuadra, A., Shan, Z., Sumners, C., & Raizada, M. (2010). Pharmacology & Therapeutics, 125(1), 27.CrossRefGoogle Scholar
  8. Cunningham, J.P., & Yu, B.M. (2014). Nature Neuroscience, 17(11), 1500.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Dampney, R.a.L., Tan, P.S.P., Sheriff, M.J., Fontes, M.a.P., & Horiuchi, J. (2007). Current Hypertension Reports, 9(3), 222.CrossRefPubMedGoogle Scholar
  10. Dayan, P. (2012). Neuron, 76(1), 240.CrossRefPubMedGoogle Scholar
  11. Destexhe, A., Rudolph, M., Fellous, J.M., & Sejnowski, T.J. (2001). Neuroscience, 107(1), 13.PubMedCentralCrossRefPubMedGoogle Scholar
  12. di Sanguinetto, S., Dasen, J., & Arber, S. (2008). Current Opinion in Neurobiology, 18(1), 36.CrossRefGoogle Scholar
  13. Donoghue, S., Garcia, M., Jordan, D., & Spyer, K.M. (1982). The Journal of Physiology, 322, 337.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Edelman, G., & Gally, J. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13763.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Ferguson, A., Washburn, D., & Latchford, K. (2001). Experimental Biology and Medicine (Maywood, NJ), 226(2), 85.Google Scholar
  16. Finkel, L. (2000). Annual Review of Biomedical Engineering, 2, 577.CrossRefPubMedGoogle Scholar
  17. Foster, W.R., Ungar, L.H., & Schwaber, J.S. (1993). Journal of Neurophysiology, 70(6), 2502.PubMedGoogle Scholar
  18. Gelband, C.H., Warth, J.D., Mason, H.S., Zhu, M., Moore, J.M., Kenyon, J.L., Horowitz, B., & Sumners, C. (1999). Circulation Research, 84(3), 352.CrossRefPubMedGoogle Scholar
  19. Grashow, R., Brookings, T., & Marder, E. (2009). Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11742.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Guan, D., Armstrong, W., & Foehring, R. (2013). The Journal of Physiology, 591(19), 4807.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Guenther, E., Schmid, S., Hewig, B., & Kohler, K. (1996). Brain Research, 718(1-2), 112.CrossRefPubMedGoogle Scholar
  22. Guyenet, P. (2006). Nature Reviews Neuroscience, 7, 335.CrossRefPubMedGoogle Scholar
  23. Hadzipasic, M., Tahvildari, B., Nagy, M., Bian, M., Horwich, A.L., & McCormick, D.A. (2014). Proceedings of the National Academy of Sciences of the United States of America, 111(47), 16883.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Hagiwara, K., Nunoki, K., Ishii, K., Abe, T., & Yanagisawa, T. (2003). Biochemical and Biophysical Research Communications, 310(2), 634.CrossRefPubMedGoogle Scholar
  25. Hubner, C.A., & Jentsch, T.J. (2002). Human Molecular Genetics, 11(20), 2435.CrossRefPubMedGoogle Scholar
  26. Hines, M.L., Morse, T., Migliore, M., Carnevale, N.T., & Shepherd, G.M. (2004). Journal of Computational Neuroscience, 17(1), 7.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Hodgkin, A., & Huxley, A. (1952). The Journal of Physiology, 117(4), 500.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Hogarty, D., Speakman, E., Puig, V., & Phillips, M. (1992). Brain Research, 586(2), 289.CrossRefPubMedGoogle Scholar
  29. Hudson, A.E., & Prinz, A.A. (2010). PLoS Computational Biology, 6(7), e1000838.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Janes, K.A., & Yaffe, M.B. (2006). Nature Reviews Molecular Cell Biology, 7(11), 820.CrossRefPubMedGoogle Scholar
  31. Jensen, K.J., & Janes, K.A. (2012). Physical Biology, 9(4), 045–004.CrossRefGoogle Scholar
  32. Kaczorowski, G.J., McManus, O.B., Priest, B.T., & Garcia, M.L. (2008). The Journal of General Physiology, 131(5), 399.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Kingsford, C., & Salzberg, S.L. (2008). Nature Biotechnology, 26(9), 1011.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Kispersky, T.J., Caplan, J.S., & Marder, E. (2012). The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(32), 10995.CrossRefGoogle Scholar
  35. Klassen, T., Davis, C., Goldman, A., Burgess, D., Chen, T., Wheeler, D., McPherson, J., Bourquin, T., Lewis, L., Villasana, D., Morgan, M., Muzny, D., Gibbs, R., & Noebels, J. (2011). Cell, 145(7), 1036.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kndgen, H., Geisler, C., Fusi, S., Wang, X.J., Lscher, H.R., & Giugliano, M. (2008). Cerebral Cortex (New York, N.Y.:1991), 18(9), 2086.CrossRefGoogle Scholar
  37. Koch, C. (1998). Biophysics of Computation: Information Processing in Single Neurons: Oxford University Press.Google Scholar
  38. Kotaleski, J.H., & Blackwell, K.T. (2010). Nature Reviews Neuroscience, 11(4), 239.CrossRefPubMedGoogle Scholar
  39. Kuhn, M. (2008). Journal of Statistical Software, 28(5), 1.CrossRefGoogle Scholar
  40. Lee, S.M., Araman, P., & et al. (2007). IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–7.Google Scholar
  41. LeMasson, G., Marder, E., & Abbott, L.F. (1993). Science (New York, N.Y.), 259(5103), 1915.CrossRefGoogle Scholar
  42. Levitan, I. (1994). Annual Review of Physiology, 56, 193.CrossRefPubMedGoogle Scholar
  43. Li, L. (2010). Methods in Molecular Biology (Clifton, N.J.), 620, 417.CrossRefGoogle Scholar
  44. Liaw, A., & Wiener, M. (2002). R News, 2(3), 18.Google Scholar
  45. Lipski, J., McAllen, R.M., & Spyer, K.M. (1975). The Journal of Physiology, 251(1), 61.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Liu, P., & Bean, B. (2014). The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(14), 4991.CrossRefGoogle Scholar
  47. Makadia, H.K., Anderson, W.D., Fey, D., Sauter, T., Schwaber, J.S., & Vadigepalli, R. (2015). Biophysical Journal, 108(1), 211.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Marder, E. (2011). Proceedings of the National Academy of Sciences of the United States of America, 108(3), 15542.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Marder, E. (2012). Neuron, 76(1), 1.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Marder, E., O’Leary, T., & Shruti, S. (2014). Annual Review of Neuroscience, 37, 329.CrossRefPubMedGoogle Scholar
  51. Marder, E., & Taylor, A.L. (2011). Nature Neuroscience, 14(2), 133.PubMedCentralCrossRefPubMedGoogle Scholar
  52. McCubbin, J., DeMoura, R., Page, I., & Olmsted, F. (1965). Science (New York, NY), 149(3690), 1394.CrossRefGoogle Scholar
  53. McGarry, L.M., Packer, A.M., Fino, E., Nikolenko, V., Sippy, T., & Yuste, R. (2010). Frontiers in Neural Circuits, 4(12).Google Scholar
  54. Mevik, B.h., & Wehrens, R. (2007). Journal of Statistical Software, 1–24.Google Scholar
  55. Mifflin, S.W., Spyer, K.M., & Withington-Wray, D.J. (1988). The Journal of Physiology, 399, 349.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Mishra, J., & Bhalla, U. (2002). Biophysical Journal, 83(3), 1298.PubMedCentralCrossRefPubMedGoogle Scholar
  57. Misonou, H., Mohapatra, D.P., Park, E.W., Leung, V., Zhen, D., Misonou, K., Anderson, A.E., & Trimmer, J.S. (2004). Nature Neuroscience, 7(711).Google Scholar
  58. Mitra, A.K., Gao, L., & Zucker, I.H. (2010). American journal of Physiology. Cell physiology, 299(3), C561.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Moresco, E.M.Y., Li, X., & Beutler, B. (2013). The American Journal of Pathology, 182(5), 1462.PubMedCentralCrossRefPubMedGoogle Scholar
  60. Nadim, F., & Bucher, D. (2014). Current Opinion in Neurobiology, 29C, 48.CrossRefGoogle Scholar
  61. Ogunnaike, B.A. (2009). Random Phenomena: Fundamentals of Probability and Statistics for Engineers: CRC Press.Google Scholar
  62. OLeary, T., Williams, A.H., Caplan, J.S., & Marder, E. (2013). Proceedings of the National Academy of Sciences of the United States of America, 110(28), 2239.Google Scholar
  63. OLeary, T., Williams, A.H., Franci, A., & Marder, E. (2014). Neuron, 82(4), 809.CrossRefGoogle Scholar
  64. O’Leary, T., & Wyllie, D.J.A. (2011). The Journal of Physiology, 589(Pt 20), 4811.PubMedCentralCrossRefPubMedGoogle Scholar
  65. Park, J., Brureau, A., Kernan, K., Starks, A., Gulati, S., Ogunnaike, B., Schwaber, J., & Vadigepalli, R. (2014). Genome Research, 24(6), 930.PubMedCentralCrossRefPubMedGoogle Scholar
  66. Paton, J., & Kasparov, S. (1999). The Journal of Physiology, 521(Pt 1), 213.PubMedCentralCrossRefPubMedGoogle Scholar
  67. Paton, J., Wang, S., Polson, J., & Kasparov, S. (2008). Journal of Molecular Medicine (Berlin, Germany), 86(6), 705.CrossRefGoogle Scholar
  68. Penela, P., Murga, C., Ribas, C., Tutor, A.S., Peregrn, S., & Mayor, F. (2006). Cardiovascular Research, 69(1), 46.CrossRefPubMedGoogle Scholar
  69. Phillips, M., & Sumners, C. (1998). Regulatory Peptides, 78(1-3), 1.CrossRefPubMedGoogle Scholar
  70. Prescott, S.A., De Koninck, Y., & Sejnowski, T.J. (2008). PLoS Computational Biology, 4(10), e1000198.PubMedCentralCrossRefPubMedGoogle Scholar
  71. Qi, Y. (2012) In Zhang, C., & Ma, Y. (Eds.), Ensemble machine learning, (pp. 307–323). US: Springer.Google Scholar
  72. Ramocki, M.B., & Zoghbi, H.Y. (2008). Nature, 455(7215), 912.PubMedCentralCrossRefPubMedGoogle Scholar
  73. Rathour, R.K., & Narayanan, R. (2012). The Journal of Physiology, 590(22), 5629.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Rathour, R.K., & Narayanan, R. (2014). Proceedings of the National Academy of Sciences of the United States of America, 111(17), 1787.CrossRefGoogle Scholar
  75. Ritter, S.L., & Hall, R.A. (2009). Nature Reviews Molecular Cell Biology, 10(12), 819.PubMedCentralCrossRefPubMedGoogle Scholar
  76. Roden, D.M. (2008). Circulation, 118(10), 981.CrossRefPubMedGoogle Scholar
  77. Rogers, R.F., Rybak, I.A., & Schwaber, J.S. (2000). Brain Research Bulletin, 51(2), 139.CrossRefPubMedGoogle Scholar
  78. Rybak, I., Paton, J., & Schwaber, J. (1997). Journal of Neurophysiology, 77(4), 1994.PubMedGoogle Scholar
  79. Sarkar, A.X., Christini, D.J., & Sobie, E.A. (2012). The Journal of Physiology, 590(11), 2555.PubMedCentralCrossRefPubMedGoogle Scholar
  80. Schulz, D., Goaillard, J., & Marder, E. (2006). Nature Neuroscience, 9(3), 356.CrossRefPubMedGoogle Scholar
  81. Schulz, D., Goaillard, J., & Marder, E. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13187.PubMedCentralCrossRefPubMedGoogle Scholar
  82. Shan, Z., Zubcevic, J., Shi, P., Jun, J., Dong, Y., Murca, T., Lamont, G., Cuadra, A., Yuan, W., Qi, Y., Li, Q., Paton, J., Katovich, M., Sumners, C., & Raizada, M. (2013). Hypertension, 61(6), 1328.PubMedCentralCrossRefPubMedGoogle Scholar
  83. Smyth, J.W., & Shaw, R.M. (2010). Heart Rhythm : The Official Journal of the Heart Rhythm Society, 7(8), 1135.CrossRefGoogle Scholar
  84. Song, Y., Nie, F., Zhang, C., & Xiang, S. (2008). Pattern Recognition, 41(9), 2789.CrossRefGoogle Scholar
  85. Spaethling, J., Piel, D., Dueck, H., Buckley, P., Morris, J., Fisher, S., Lee, J., Sul, J., Kim, J., Bartfai, T., Beck, S., & Eberwine, J. (2014). FASEB journal, 28(2), 771.PubMedCentralCrossRefPubMedGoogle Scholar
  86. Sumners, C., Fleegal, M., & Zhu, M. (2002). Clinical and Experimental Pharmacology & Physiology, 29(5-6), 483.CrossRefGoogle Scholar
  87. Sun, K., & Marchand-maillet, S. (2014) In Jebara, T., & Xing, E.P. (Eds.), Proceedings of the 31st International Conference on Machine Learning (ICML-14), (pp. 1–9).Google Scholar
  88. Svoz-Couche, C., Spyer, K.M., & Jordan, D. (2000). British Journal of Pharmacology, 131(7), 1445.CrossRefGoogle Scholar
  89. Taylor, A.L., Goaillard, J.M., & Marder, E. (2009). The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(17), 5573.CrossRefGoogle Scholar
  90. Taylor, A.L., Hickey, T.J., Prinz, A.A., & Marder, E. (2006). Journal of Neurophysiology, 96(2), 891.CrossRefPubMedGoogle Scholar
  91. R Development Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051- 07-0.
  92. Temporal, S., Lett, K.M., & Schulz, D.J. (2014). Current Biology, 24(16), 1899.Google Scholar
  93. Tobin, A., Cruz-Bermdez, N., Marder, E., & Schulz, D. (2009). PLoS ONE, 4(8), E6742.PubMedCentralCrossRefPubMedGoogle Scholar
  94. Toledo-Rodriguez, M., Blumenfeld, B., Wu, C., Luo, J., Attali, B., Goodman, P., & Markram, H. (2004). Cerebral Cortex (New York, N.Y.:1991), 14(12), 1310.CrossRefGoogle Scholar
  95. Torben-Nielsen, B., & Stiefel, K.M. (2009). Network (Bristol, England), 20(2), 69.Google Scholar
  96. Torben-Nielsen, B., & Stiefel, K.M. (2010). PLoS Computational Biology, 6(9), e1000932.PubMedCentralCrossRefPubMedGoogle Scholar
  97. Tripathy, S.J., Burton, S.D., Geramita, M., Gerkin, R.C., & Urban, N.N. (2015). Journal of Neurophysiology, 113(10), 3474.CrossRefPubMedGoogle Scholar
  98. Vadigepalli, R., Doyle, F.J., & Schwaber, J.S. (2001). Neural Computation, 13(10), 2239.CrossRefPubMedGoogle Scholar
  99. Wang, D., Gelband, C.H., Sumners, C., & Posner, P. (1997). Journal of Neurophysiology, 78(2), 1013.PubMedGoogle Scholar
  100. Wold, S., Sjstrm, M., & Eriksson, L. (2001). Chemometrics and Intelligent Laboratory Systems, 58(2), 109.CrossRefGoogle Scholar
  101. Wolfram, V., Southall, T.D., Gnay, C., Prinz, A.A., Brand, A.H., & Baines, R.A. (2014). The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(7), 2538.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Warren D. Anderson
    • 1
    • 2
    • 3
  • Hirenkumar K. Makadia
    • 1
    • 3
  • Rajanikanth Vadigepalli
    • 1
    • 2
    • 3
    Email author
  1. 1.Daniel Baugh Institute for Functional Genomics and Computational BiologyThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Graduate program in NeuroscienceThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations