Journal of Computational Neuroscience

, Volume 39, Issue 3, pp 271–287 | Cite as

Dissecting estimation of conductances in subthreshold regimes

Article

Abstract

We study the influence of subthreshold activity in the estimation of synaptic conductances. It is known that differences between actual conductances and the estimated ones using linear regression methods can be huge in spiking regimes, so caution has been taken to remove spiking activity from experimental data before proceeding to linear estimation. However, not much attention has been paid to the influence of ionic currents active in the non-spiking regime where such linear methods are still profusely used. In this paper, we use conductance-based models to test this influence using several representative mechanisms to induce ionic subthreshold activity. In all the cases, we show that the currents activated during subthreshold activity can lead to significant errors when estimating synaptic conductance linearly. Thus, our results add a new warning message when extracting conductance traces from intracellular recordings and the conclusions concerning neuronal activity that can be drawn from them. Additionally, we present, as a proof of concept, an alternative method that takes into account the main nonlinear effects of specific ionic subthreshold currents. This method, based on the quadratization of the subthreshold dynamics, allows us to reduce the relative errors of the estimated conductances by more than one order of magnitude. In experimental conditions, under appropriate fitting to canonical models, it could be useful to obtain better estimations as well even under the presence of noise.

Keywords

Synaptic conductance estimation Conductance-based model Subthreshold activity Quadratization Intracellular recordings 

Supplementary material

10827_2015_576_MOESM1_ESM.pdf (28 kb)
(PDF 27.8 KB)

References

  1. Anderson, J.S., Carandini, M., & Ferster, D. (2000). Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. Journal of Neurophysiology, 84(2), 909–926. http://jn.physiology.org/content/84/2/909.abstract.PubMedGoogle Scholar
  2. Bédard, C., Béhuret, S., Deleuze, C., Bal, T., & Destexhe, A. (2011). Oversampling method to extract excitatory and inhibitory conductances from single-trial membrane potential recordings. Journal of Neuroscience Methods. doi:10.1016/j.jneumeth.2011.09.010.
  3. Bennett, C., Arroyo, S., & Hestrin, S. (2013). Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron, 80(2), 350–357. doi:10.1016/j.neuron.2013.08.007. http://www.sciencedirect.com/science/article/pii/S0896627313007186.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Berg, R.W., & Ditlevsen, S. (2013). Synaptic inhibition and excitation estimated via the time constant of membrane potential fluctuations. Journal of Neurophysiology, 110(4), 1021–1034. doi:10.1152/jn.00006.2013.CrossRefPubMedGoogle Scholar
  5. Carbone, E., Marcantoni, A., Giancippoli, A., Guido, D., & Carabelli, V. (2006). T-type channels-secretion coupling: evidence for a fast low-threshold exocytosis. Pflügers Archiv, 453(3), 373–383. doi:10.1007/s00424-006-0100-7.CrossRefPubMedGoogle Scholar
  6. Closas, P. (2014). Sequential estimation of neural models by bayesian filtering. diploma thesis, FME-Univ. Politènica de Catalunya.Google Scholar
  7. Cox, S.J. (2004). Estimating the location and time course of synaptic input from multi-site potential recordings. Journal of Computational Neuroscience, 17, 225–243.CrossRefPubMedGoogle Scholar
  8. Destexhe, A., Babloyantz, A., & Sejnowski, T. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, 65, 1538–1552. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225880/.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience, 4(9), 739–751. doi:10.1038/nrn1198.CrossRefPubMedGoogle Scholar
  10. Dickson, C.T., Magistretti, J., Shalinsky, M.H., Fransén, E., Hasselmo, M.E., & Alonso, A. (2000). Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. Journal of Neurophysiology, 83(5), 2562–2579. http://view.ncbi.nlm.nih.gov/pubmed/10805658.PubMedGoogle Scholar
  11. Fenichel, N (1979). Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31(1), 53–98.CrossRefGoogle Scholar
  12. Guillamon, A, McLaughlin, DW, & Rinzel, J (2006). Estimation of synaptic conductances. Journal of Physiology-Paris, 100(1–3), 31–42. doi:10.1016/j.jphysparis.2006.09.010.CrossRefGoogle Scholar
  13. Hirsch, JA, Alonso, JM, Reid, CR, & Martinez, LM (1998). Synaptic integration in striate cortical simple cells. Journal of Neuroscience, 18(22), 9517–9528. http://www.jneurosci.org/cgi/content/abstract/18/22/9517.PubMedGoogle Scholar
  14. Hotson, JR, & Prince, DA (1980). A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. Journal of Neurophysiology, 43(2), 409–419. http://jn.physiology.org/content/43/2/409.full.PubMedGoogle Scholar
  15. Kobayashi, R, Tsubo, Y, Lansky, P, & Shinomoto, S (2011). Estimating time-varying input signals and ion channel states from a single voltage trace of a neuron. Advances in Neural Information Processing Systems (NIPS), 24, 217–225.Google Scholar
  16. Lankarany, M., Zhu, W.P., Swamy, M., & Toyoizumi, T. (2013a). Blind deconvolution of hodgkin-huxley neuronal model. In Engineering in Medicine and Biology Society (EMBC), 2013 35th annual international conference of the IEEE (pp. 3941–3944). doi:10.1109/EMBC.2013.6610407.
  17. Lankarany, M., Zhu, W.P., Swamy, M.N.S., & Toyoizumi, T. (2013b). Inferring trial-to-trial excitatory and inhibitory synaptic inputs from membrane potential using Gaussian mixture Kalman filtering. Frontiers in Computational Neuroscience, 7. doi:10.3389/fncom.2013.00109.
  18. Lombardi, F., Herrmann, H.J., Perrone-Capano, C., Plenz, D., & de Arcangelis, L. (2012). Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. Physical Review Letters, 108, 228,703. doi:10.1103/PhysRevLett.108.228703.CrossRefGoogle Scholar
  19. McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, D.J. (2000). A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 8087–8092. doi:10.1073/pnas.110135097.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Monier, C., Fournier, J., & Fregnac, Y. (2008). In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. Journal of Neuroscience Methods, 169(2), 323–365. doi:10.1016/j.jneumeth.2007.11.008.CrossRefPubMedGoogle Scholar
  21. Paninski, L., Vidne, M., DePasquale, B., & Ferreira, D.G. (2012). Inferring synaptic inputs given a noisy voltage trace via sequential monte carlo methods. Journal of Computational Neuroscience, 33(1), 1–19. http://link.springer.com/article/10.1007/s10827-011-0371-7.CrossRefPubMedGoogle Scholar
  22. Pospischil, M., Piwkowska, Z., Bal, T., & Destexhe, A. (2009). Extracting synaptic conductances from single membrane potential traces. Neuroscience, 158, 545–552.CrossRefPubMedGoogle Scholar
  23. Rotstein, H. (2015). Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. Journal of Computational Neuroscience, 38(2), 325–354. doi:10.1007/s10827-014-0544-2.CrossRefPubMedGoogle Scholar
  24. Rotstein, H., Oppermann, T., White, J., & Kopell, N. (2006). The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. Journal of Computational Neuroscience, 21(3), 271–292. doi:10.1007/s10827-006-8096-8.CrossRefPubMedGoogle Scholar
  25. Rudolph, M., Piwkowska, Z., Badoual, M., Bal, T., & Destexhe, A. (2004). A method to estimatesynaptic conductances from membrane potential fluctuations, 91(6), 2884–2896. doi:10.1152/jn.01223.2003. http://jn.physiology.org/content/91/6/2884.full.
  26. Tao, L., Shelley, M., McLaughlin, D., & Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 366–371. doi:10.1073/pnas.2036460100.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Wang, X.J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79(3), 1549–1566. http://view.ncbi.nlm.nih.gov/pubmed/9497431.PubMedGoogle Scholar
  28. Wehr, M, & Zador, AM (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446. doi:10.1038/nature02116.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science - Escola Politècnica SuperiorUniversitat de les Illes BalearsPalmaSpain
  2. 2.Department of Applied Mathematics I - EPSEBUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations