Journal of Computational Neuroscience

, Volume 39, Issue 2, pp 197–216 | Cite as

Generalized seizures in a neural field model with bursting dynamics

Article

Abstract

The mechanisms underlying generalized seizures are explored with neural field theory. A corticothalamic neural field model that has accounted for multiple brain activity phenomena and states is used to explore changes leading to pathological seizure states. It is found that absence seizures arise from instabilities in the system and replicate experimental studies in numerous animal models and clinical studies.

Keywords

Neural-field theory Corticothalamic Generalized seizures 

References

  1. Abeysuriya, R., Rennie, C., & Robinson, P. (2014). Prediction and verification of nonlinear sleep spindle harmonic oscillations. Journal of Theoretical Biology, 344, 70–77.CrossRefPubMedGoogle Scholar
  2. Avanzini, G, de Curtis, M., Marescaux, C., Panzica, F., & Spreafico, R. (1992). Role of the thalamic reticular nucleus in the generation of rhythmic thalamo-cortical activities subserving spike and waves. In Focus on GABA-B Receptors, Generalized Non-Convulsive Epilepsy (pp. 85–95): Springer.Google Scholar
  3. Avoli, M., & Gloor, P. (1981). The effects of transient functional depression of the thalamus on spindles and on bilateral synchronous epileptic discharges of feline generalized penicillin epilepsy. Epilepsia, 22, 443–452.CrossRefPubMedGoogle Scholar
  4. Avoli, M., Gloor, P., Kostopoulos, G., & Gotman, J. (1983). An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons. Journal of Neuropsychology, 50, 819–837.Google Scholar
  5. Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. The Journal of Neuroscience, 22, 8691–8704.PubMedGoogle Scholar
  6. Blumenfeld, H., & McCormick, D.A. (2000). Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. The Journal of Neuroscience, 20, 5153–5162.PubMedGoogle Scholar
  7. Braitenberg, V., & Schüz, A. (1998). Cortical architectonics. In Cortex: Statistics and Geometry of Neuronal Connectivity (pp. 135–137): Springer.Google Scholar
  8. Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., & Robinson, P.A. (2006). A unified explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex, 16, 1296–1313.CrossRefPubMedGoogle Scholar
  9. Browne, T.R., & Holmes, G.L. (2000). Handbook of epilepsy. Philadelphia: Williams and Wilkins.Google Scholar
  10. Buckwar, E., & Winkler, R. (2007). Multi-step Maruyama methods for stochastic delay differential equations. Stochastic Analysis and Applications, 25, 933–959.CrossRefGoogle Scholar
  11. Crunelli, V., Cope, D.W., & Terry, J.R. (2011). Transition to absence seizures and the role of GABA A receptors. Epilepsy Research, 97, 283–289.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Crunelli, V., & Leresche, N. (2002). Childhood absence epilepsy: genes, channels, neurons and networks. Nature Reviews. Neuroscience, 3(5), 371–382.CrossRefPubMedGoogle Scholar
  13. Destexhe, A. (1998). Spike-and-wave oscillations based on the properties of GABA B receptors. The Journal of Neuroscience, 18, 9099–9111.PubMedGoogle Scholar
  14. Destexhe, A. (1999). Can GABA A conductances explain the fast oscillation frequency of absence seizures in rodents. The European Journal of Neuroscience, 11, 2175–2181.CrossRefPubMedGoogle Scholar
  15. Destexhe, A., Bal, T., McCormick, D.A., & Sejnowski, T.J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology, 76, 2049–2070.PubMedGoogle Scholar
  16. Destexhe, A., McCormick, D.A., & Sejnowski, T.J. (1993). A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophysical Journal, 65, 2473–2477.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Dulac, O. (2001). Epileptic encephalopathy. Epilepsia, 42, 23–26.CrossRefPubMedGoogle Scholar
  18. Freestone, D., Aram, P., Dewar, M., Scerri, K., Grayden, D.B., & Kadirkamanathan, V. (2011). A data-driven framework for neural field modeling. NeuroImage, 56(3), 1043–1058.CrossRefPubMedGoogle Scholar
  19. Freestone, D.R., Nesic, D., Jafarian, A., Cook, M.J., & Grayden, D.B. (2013). A neural mass model of spontaneous burst suppression and epileptic seizures. In 2013 35th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society (EMBC) (pp. 5942–5945): IEEE.Google Scholar
  20. Gloor, P., & Fariello, R. (1988). Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends in Neurosciences, 11, 63–68.CrossRefPubMedGoogle Scholar
  21. Gloor, P., Quesney, L., & Zumstein, H. (1977). Pathophysiology of generalized penicillin epilepsy in the cat: the role of cortical and subcortical structures. II. topical application of penicillin to the cerebral cortex and to subcortical structures. Electroencephalography and Clinical Neurophysiology, 43, 79–94.CrossRefPubMedGoogle Scholar
  22. Gören, M.Z., & Onat, F. (2007). Ethosuximide: from bench to bedside. CNS Drug Reviews, 13, 224–239.CrossRefPubMedGoogle Scholar
  23. Higham, D.J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM review, 43, 525–546.CrossRefGoogle Scholar
  24. Huguenard, J., & Prince, D. (1994). Clonazepam suppresses GABA B-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. Journal of Neurophysiology, 71, 2576–2581.PubMedGoogle Scholar
  25. Izhikevich, E., & Edelman, G. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Sciences of the United States of America, 105, 3593–3598.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Jasper, H., & Kershman, J. (1941). Electroencephalographic classification of the epilepsies. Archives of Neurology and Psychology, 45, 903.CrossRefGoogle Scholar
  27. Katzung, B.G., Masters, S.B., Trevor, A.J., & et al. (2004). Basic & clinical pharmacology. New York: McGraw Hill Medical.Google Scholar
  28. Kim, J.W., & Robinson, P.A. (2007). Compact dynamical model of brain activity. Physical Review E, 031907, 75.Google Scholar
  29. Kloeden, P.E., & Platen, E. (1992). Numerical solution of stochastic differential equations, Vol. 23, Springer Science & Business Media.Google Scholar
  30. Koch, C. (2004). Biophysics of Computation: Information Processing in Single Neurons: Information Processing in Single Neurons. New York: Oxford University Press.Google Scholar
  31. Kostopoulos, G., Gloor, P., Pellegrini, A., & Gotman, J. (1981a). A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: microphysiological features. Experimental Neurology, 73, 55–77.CrossRefPubMedGoogle Scholar
  32. Kostopoulos, G., Gloor, P., Pellegrini, A., & Siatitsas, I. (1981b). A study of the transition from spindles to spike and wave discharge in feline generalized penicillin epilepsy: EEG features. Experimental Neurology, 73, 43–54.CrossRefPubMedGoogle Scholar
  33. Liley, D.T., & Bojak, I. (2005). Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Journal of Clinical Neurophysiology, 22, 300–313.PubMedGoogle Scholar
  34. Liu, Z., Vergnes, M., Depaulis, A., & Marescaux, C. (1992). Involvement of intrathalamic GABA B neurotransmission in the control of absence seizures in the rat. Neuroscience, 48, 87–93.CrossRefPubMedGoogle Scholar
  35. Loddenkemper, T., Fernández, I.S., & Peters, J.M. (2011). Continuous spike and waves during sleep and electrical status epilepticus in sleep. Journal of Clinical Neurophysiology, 28, 154–164.CrossRefPubMedGoogle Scholar
  36. Lytton, W.W., Contreras, D., Destexhe, A., & Steriade, M. (1997). Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. Journal of Neurophysiology, 77, 1679–1696.PubMedGoogle Scholar
  37. Marten, F., Rodrigues, S., Benjamin, O., Richardson, M.P., & Terry, J.R. (2009). Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philosophical Transactions of the Royal Society A, 367(1891), 1145–1161.CrossRefGoogle Scholar
  38. McCormick, D., & Hashemiyoon, R. (1998). Thalamocortical neurons actively participate in the generation of spike-and-wave seizures in rodents. Society for Neuroscience Abstracts, 24, 129.Google Scholar
  39. McLachlan, R.S., Avoli, M., & Gloor, P. (1984). Transition from spindles to generalized spike and wave discharges in the cat: simultaneous single-cell recordings in cortex and thalamus. Experimental Neurology, 85, 413–425.CrossRefPubMedGoogle Scholar
  40. Nelson, M., Todorovic, S., & Perez-Reyes, E. (2006). The role of T-type calcium channels in epilepsy and pain. Current Pharmaceutical Design, 12, 2189–2197.CrossRefPubMedGoogle Scholar
  41. Nevado-Holgado, A.J., Marten, F., Richardson, M.P., & Terry, J.R. (2012). Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: application to epilepsy seizure evolution. Neuroimage, 59, 2374–2392.CrossRefPubMedGoogle Scholar
  42. Nunez, P.L. (1995). Neocortical Dynamics and Human EEG Rhythms. Oxford: Oxford University Press.Google Scholar
  43. OConnor, S., & Robinson, P. (2003). Wave-number spectrum of electrocorticographic signals. Physical Review E, 051912, 67.Google Scholar
  44. OConnor, S., Robinson, P., & Chiang, A. (2002). Wave-number spectrum of electroencephalographic signals. Physical Review E, 061905, 66.Google Scholar
  45. Panayiotopoulos, C.P. (2008). Typical absence seizures and related epileptic syndromes: assessment of current state and directions for future research. Epilepsia, 49, 2131–2139.CrossRefPubMedGoogle Scholar
  46. Pellegrini, A., Musgrave, J., & Gloor, P. (1979). Role of afferent input of subcortical origin in the genesis of bilaterally synchronous epileptic discharges of feline generalized penicillin epilepsy. Experimental Neurology, 64, 155–173.CrossRefPubMedGoogle Scholar
  47. Pinault, D., Leresche, N., Charpier, S., Deniau, J.-M., Marescaux, C., Vergnes, M., & Crunelli, V. (1998). Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. The Journal of Physiology, 509, 449–456.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Prevett, M., Duncan, J., Jones, T., Fish, D., & Brooks, D. (1995). Demonstration of thalamic activation during typical absence seizures using H\(_{2}^{15}\)O and PET. Neurology, 45, 1396–1402.CrossRefPubMedGoogle Scholar
  49. Rennie, C., Robinson, P., & Wright, J. (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biological Cybernetics, 86, 457–471.CrossRefPubMedGoogle Scholar
  50. Roberts, J.A., & Robinson, P.A. (2008). Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. Journal of Thermal Biology, 253, 189–201.CrossRefGoogle Scholar
  51. Roberts, J.A., & Robinson, P.A. (2012). Corticothalamic dynamics: Structure of parameter space, spectra, instabilities, and reduced model. Physical Review E, 011910, 85.Google Scholar
  52. Robinson, P.A. (2006). Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Physical Review E, 041904, 73.Google Scholar
  53. Robinson, P.A., Rennie, C.J., & Rowe, D.L. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 041924, 64.Google Scholar
  54. Robinson, P.A., Rennie, C.J., Rowe, D.L., & O’Connor, S.C. (2004). Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapping, 23, 53–72.CrossRefPubMedGoogle Scholar
  55. Robinson, P.A., Rennie, C.J., Rowe, D.L., O’Connor, S.C., Wright, J.J., Gordon, E., Whitehouse, R.W., & et al. (2003). Neurophysical modeling of brain dynamics. Neuropharmacology, 28, S74.Google Scholar
  56. Robinson, P.A., Rennie, C.J., Wright, J., & Bourke, P. (1998). Steady states and global dynamics of electrical activity in the cerebral cortex. Physical Review E, 58, 3557.CrossRefGoogle Scholar
  57. Robinson, P.A., Rennie, C.J., & Wright, J.J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Physical Review E, 56, 826–840.CrossRefGoogle Scholar
  58. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., & Rowe, D.L. (2001). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 021903, 63.Google Scholar
  59. Robinson, P.A., Wu, H., & Kim, J.W. (2008). Neural rate equations for bursting dynamics derived from conductance-based equations. Journal of Thermal Biology, 250, 663–672.CrossRefGoogle Scholar
  60. Sadleir, L.G., Scheffer, I.E., Smith, S., Carstensen, B., Farrell, K., & Connolly, M.B. (2009). Eeg features of absence seizures in idiopathic generalized epilepsy: impact of syndrome, age, and state. Epilepsia, 50, 1572–1578.CrossRefPubMedGoogle Scholar
  61. Schiff, S.J., & Sauer, T. (2008). Kalman filter control of a model of spatiotemporal cortical dynamics. BMC Neuroscience, 9(Suppl 1), O1.CrossRefGoogle Scholar
  62. Schiff, S.J., Sauer, T., Kumar, R., & Weinstein, S.L. (2005). Neuronal spatiotemporal pattern discrimination: The dynamical evolution of seizures. NeuroImage, 28, 1043.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Seidenbecher, T., Staak, R., & Pape, H.-C. (1998). Relations between cortical and thalamic cellular activities during absence seizures in rats. The European Journal of Neuroscience, 10, 1103–1112.CrossRefPubMedGoogle Scholar
  64. Shorvon, S.D. (2010). Handbook of epilepsy treatment. New York: Wiley.CrossRefGoogle Scholar
  65. Srinivasan, R., Nunez, P.L., & Silberstein, R.B. (1998). Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Transactions on Biomedical Engineering, 45, 814–826.CrossRefPubMedGoogle Scholar
  66. Steriade, M. (1974). Interneuronal epileptic discharges related to spike-and-wave cortical seizures in behaving monkeys. Electroencephalography and Clinical Neurophysiology, 37, 247–263.CrossRefPubMedGoogle Scholar
  67. Steriade, M., Amzica, F., Neckelmann, D., & Timofeev, I. (1998). Spike-wave complexes and fast components of cortically generated seizures. ii. extra-and intracellular patterns. Journal of Neurophysiology, 80, 1456–1479.PubMedGoogle Scholar
  68. Steriade, M., & Contreras, D. (1995). Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. The Journal of Neuroscience, 15, 623–642.PubMedGoogle Scholar
  69. Steriade, M., & Contreras, D. (1998). Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. Journal of Neurophysiology, 80, 1439–1455.PubMedGoogle Scholar
  70. Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research Reviews, 8, 1–63.CrossRefGoogle Scholar
  71. Steriade, M., Gloor, P., Llinas, R.R., da Silva, F.H.L., & Mesulam, M.-M. (1990). Report of IFCN committee on basic mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalography and Clinical Neurophysiology, 76, 481–508.CrossRefPubMedGoogle Scholar
  72. Steriade, M., McCormick, D.A., & Sejnowski, T.J. (1993a). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262, 679–685.CrossRefPubMedGoogle Scholar
  73. Steriade, M., Nuñez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. The Journal of Neuroscience, 13, 3266–3283.PubMedGoogle Scholar
  74. Steyn-Ross, M.L., Steyn-Ross, D.A., & Sleigh, J.W. (2012). Gap junctions modulate seizures in a mean-field model of general anesthesia for the cortex. Cognitive Neurodynamics, 6, 215–225.PubMedCentralCrossRefPubMedGoogle Scholar
  75. Suffczynski, P., Kalitzin, S., & Lopes Da Silva, F. (2004). Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience, 126, 467–484.CrossRefPubMedGoogle Scholar
  76. Tatum, W.O., Ho, S., & Benbadis, S.R. (2010). Polyspike ictal onset absence seizures. Journal of Clinical Neurophysiology, 27, 93–99.CrossRefPubMedGoogle Scholar
  77. Tsakiridou, E., Bertollini, L., de Curtis, M., Avanzini, G., & Pape, H.-C. (1995). Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. The Journal of Neuroscience, 15, 3110–3117.PubMedGoogle Scholar
  78. Velazquez, J.L.P., Huo, J.Z., Dominguez, L.G., Leshchenko, Y., & Snead III, O.C. (2007). Typical versus atypical absence seizures: network mechanisms of the spread of paroxysms. Epilepsia, 48, 1585–1593.CrossRefPubMedGoogle Scholar
  79. Vergnes, M., & Marescaux, C. (1992). Cortical and thalamic lesions in rats with genetic absence epilepsy. In Focus on GABA B Receptors, Generalized Non-Convulsive Epilepsy (pp. 71–83): Springer.Google Scholar
  80. Williams, D. (1953). A study of thalamic and cortical rhythms in petit mal. Brain, 76, 50–69.CrossRefPubMedGoogle Scholar
  81. Wilson, H. (1999). Spikes, Decisions and Actions: The Dynamical Foundations of Neuroscience. New York: Oxford University Press.Google Scholar
  82. Wright, J.J., & Liley, D.T.J. (1996). Dynamics of the brain at global and microscopic scales; neural networks and the EEG. The Behavioral and Brain Sciences, 19, 285–295.CrossRefGoogle Scholar
  83. Wu, H.-Y., Robinson, P.A., & Kim, J.W. (2011). Firing responses of bursting neurons with delayed feedback. Journal of Computational Neuroscience, 31, 61–71.CrossRefPubMedGoogle Scholar
  84. Zhao, X., Kim, J., & Robinson, P (2015). Slow-wave oscillations in a corticothalamic model of sleep and wake. Journal of Thermal Biology.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of PhysicsThe University of SydneySydneyAustralia
  2. 2.Center for Integrative Brain FunctionUniversity of SydneyNSWAustralia
  3. 3.NeurosleepGlebeAustralia
  4. 4.Cooperative Research Center for Alertness, Safety, and ProductivityUniversity of SydneyNSWAustralia

Personalised recommendations