Journal of Computational Neuroscience

, Volume 39, Issue 2, pp 155–179 | Cite as

How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation

  • Meysam HashemiEmail author
  • Axel Hutt
  • Jamie Sleigh


Increasing concentrations of the anaesthetic agent propofol initially induces sedation before achieving full general anaesthesia. During this state of anaesthesia, the observed specific changes in electroencephalographic (EEG) rhythms comprise increased activity in the δ− (0.5−4 Hz) and α− (8−13 Hz) frequency bands over the frontal region, but increased δ− and decreased α−activity over the occipital region. It is known that the cortex, the thalamus, and the thalamo-cortical feedback loop contribute to some degree to the propofol-induced changes in the EEG power spectrum. However the precise role of each structure to the dynamics of the EEG is unknown. In this paper we apply a thalamo-cortical neuronal population model to reproduce the power spectrum changes in EEG during propofol-induced anaesthesia sedation. The model reproduces the power spectrum features observed experimentally both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the importance of multiple resting states in brain activity. The work suggests that the α−activity originates from the cortico-thalamic relay interaction, whereas the emergence of δ−activity results from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced thalamic reticular-relay interaction. This model suggests an important role for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the generation of both the δ− and the α− EEG patterns that are seen during propofol anaesthesia sedation.


Anaesthesia sedation EEG Propofol Thalamo-cortical model 



The authors acknowledge funding from the European Research Council for support under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 257253.


  1. Alkire, M.T., Haier, R.J., & Fallon, J.H. (2000). Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Consciousness and Cognition, 9, 370–386.CrossRefPubMedGoogle Scholar
  2. Alkire, M.T., Hudetz, A.G., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322, 876–880. doi: 10.1126/science.1149213.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27, 77–87.CrossRefPubMedGoogle Scholar
  4. Antkowiak, B. (2002). In vitro networks: cortical mechanisms of anaesthetic action. British Journal of Anaesthesia, 89(1), 102–111.CrossRefPubMedGoogle Scholar
  5. Belelli, D., Harrison, N.L., Maguire, J., Macdonald, R.L., Walker, M.C., & Cope, D.W. (2009). Extra-synaptic GABA A receptors: form, pharmacology, and function. The Journal of Neuroscience, 29(41), 12757–12763.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bojak, I., & Liley, D.T.J. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041902.CrossRefGoogle Scholar
  7. Boly, M., Moran, R., Murphy, M., Boveroux, P., Bruno, M.A., Noirhomme, Q., Ledoux, D., Bonhomme, V., Brichant, J.F., Tononi, G., Laureys, S., & Friston, K.I. (2012). Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. The Journal of Neuroscience, 32(20), 7082–7090.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Breakspear, M., Roberts, J., Terry, J.R., Rodrigues, S., Mahant, N., & Robinson, P.A. (2006). A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cerebral Cortex, 16, 1296–1313.CrossRefPubMedGoogle Scholar
  9. Bressloff, P. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A, 45, 033001.CrossRefGoogle Scholar
  10. Byoung-Kyong, M. (2010). A thalamic reticular networking model of consciousness. Theoretical Biology and Medical Modelling, 7.Google Scholar
  11. Chau, P-L. (2010). New insights into the molecular mechanisms of general anaesthetics. British Journal of Pharmacology, 161, 288–307.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Chiang, A.K., Rennie, C.J., Robinson, P.A., Roberts, J.A., Rigozzi, M.K., Whitehouse, R.W., Hamilton, R.J., & Gordon, E. (2008). Automated characterization of multiple alpha peaks in multi-site electroencephalograms. Journal of Neuroscience Methods, 168, 396–411.CrossRefPubMedGoogle Scholar
  13. Ching, S., Cimenser, A., Purdon, P.L., Brown, E.N., & Kopell, N.J. (2010). Thalamocortical model for a propofol-induced-rhythm associated with loss of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 107(52), 22665–22670.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Ching, S., Purdon, P.L., Vijayand, S., Kopell, N.J., & Brown, E.N. (2012). A neurophysiological metabolic model for burst suppression. Proceedings of the National Academy of Sciences of the United States of America, 109 (8), 3095–3100.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Cimenser, A., Purdon, P.L., Pierce, E.T., Walsh, J.L., Salazar-Gomez, A.F., Harrell, P.G., Tavares-Stoeckel, C., Habeeb, K., & Brown, E.N. (2011). Tracking brain states under general anesthesia by using global coherence analysis. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8832–8837.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dang-Vu, T.T., Schabus, M., Desseilles, M., Albouy, G., Boly, M., Darsaud, A., Gais, S., Rauchs, G., Sterpenich, V., Vandewalle, G., Carrier, J., Moonen, G., Balteau, E., Degueldre, C., Luxen, A., Phillips, C., & Maquet, P. (2008). Spontaneous neural activity during human slow wave sleep. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15160–15165.PubMedCentralCrossRefPubMedGoogle Scholar
  17. David, O., & Friston, K.J. (2003). A neural mass model for meg/eeg: coupling and neuronal dynamics. NeuroImage, 20, 1743– 1755.CrossRefPubMedGoogle Scholar
  18. David, O., Kiebel, S.J., Harrison, L.M., Mattout, J., Kilner, J.M., & Friston, K.J. (2006). Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage, 30, 1255–1272.CrossRefPubMedGoogle Scholar
  19. Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., & Friston, K. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Computational Biology, 4(8).Google Scholar
  20. Drover, J.D., Schiff, N.D., & Victor, J.D. (2010). Dynamics of coupled thalamocortical modules. Journal of Computational Neuroscience, 28, 605–616.CrossRefPubMedGoogle Scholar
  21. Farrant, M., & Nusser, Z. (2005). Variations on an inhibitory theme: phasic and tonic activation of GABA A receptors. Nature Reviews Neuroscience, 6, 215–229.CrossRefPubMedGoogle Scholar
  22. Feshchenko, V.A., Veselis, R.A., & Reinsel, R.A. (2004). Propofol-induced alpha rhythm. Neuropsychobiology, 50(3), 257–266.CrossRefPubMedGoogle Scholar
  23. Foster, B.L., Bojak, I., & Liley, D.T.J. (2008). Population based models of cortical drug response: insights from anaesthesia. Cognitive Neurodynamics, 2, 283–296.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Franks, N.P. (2008). General anesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nature Reviews Neuroscience, 9, 370–386. doi: 10.1038/nrn2372.CrossRefPubMedGoogle Scholar
  25. Franks, N.P., & Lieb, W.R. (1994). Molecular and cellular mechanisms of general anesthesia. Nature, 367, 607–614.CrossRefPubMedGoogle Scholar
  26. Freeman, W.J. (1979). Nonlinear gain mediating cortical stimulus-response relations. Biological Cybernetics, 33, 237–247.CrossRefPubMedGoogle Scholar
  27. Freestone, D.R., Aram, P., Dewar, M., Scerri, K., Grayden, D.B., & Kadirkamanathan, V. (2011). A data-driven framework for neural field modeling. NeuroImage, 56(3), 1043–1058.CrossRefPubMedGoogle Scholar
  28. Friston, K.J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 273–1302.Google Scholar
  29. Garcia, P.S., Kolesky, S.E., & Jenkins, A. (2010). General anesthetic actions on GABA A receptors. Current Neuropharmacology, 8(1), 2–9.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Grasshoff, C., Drexler, B., Rudolph, U., & Antkowiak, B. (2006). Anaesthetic drugs: linking molecular actions to clinical effects. Current Pharmaceutical Design, 12(28), 3665–3679.CrossRefPubMedGoogle Scholar
  31. Gugino, L.D., Chabot, R.J., Prichep, L.S., John, E.R., Formanek, V., & Aglio, L.S. (2001). Quantitative EEG changes associated with loss and return of conscious- ness in healthy adult volunteers anaesthetized with propofol or sevoflurane. British Journal of Anaesthesia, 87, 421–428.CrossRefPubMedGoogle Scholar
  32. Hashemi, M., Hutt, A., & Sleigh, J. (2014). Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Journals of Frontiers in Systems Neuroscience, 8(232).Google Scholar
  33. Hazeaux, C., Tisserant, D., Vespignani, H., Hummer-Sigiel, L., Kwan-Ning, V., & Laxenaire, M.C. (1987). Electroencephalographic changes produced by propofol. Annales Françaises d’Anesthèsie et de Rèanimation, 6, 261–266.CrossRefPubMedGoogle Scholar
  34. Hindriks, R., & van Putten, M.J.A.M. (2012). Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. Neuroimage, 60, 2323–2344.CrossRefPubMedGoogle Scholar
  35. Hindriks, R., & van Putten, M.J.A.M. (2013). Thalamo-cortical mechanisms underlying changes in amplitude and frequency of human alpha oscillations. Neuroimage, 70, 150–163.CrossRefPubMedGoogle Scholar
  36. Hutt, A. (2012). The population firing rate in the presence of GABAergic tonic inhibition in single neurons and application to general anaesthesia. Cognitive Neurodynamics, 6, 227–237.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Hutt, A. (2013). The anaesthetic propofol shifts the frequency of maximum spectral power in EEG during general anaesthesia: analytical insights from a linear model. Frontiers in Computational Neuroscience, 7, 2.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Hutt, A., & Buhry, L. (2014). Study of GABAergic extra-synaptic tonic inhibition in single neurons and neural populations by traversing neural scales: application to propofol-induced anaesthesia. Journal of Computational Neuroscience. in press.Google Scholar
  39. Hutt, A., & Longtin, A. (2009). Effects of the anesthetic agent propofol on neural populations. Cognitive Neurodynamics, 4(1), 37–59.Google Scholar
  40. Hutt, A., Bestehorn, M., & Wennekers, T. (2003). Pattern formation in intracortical neuronal fields. Network: Computation in Neural Systems, 14, 351–368.CrossRefGoogle Scholar
  41. Jirsa, V.K., & Haken, H. (1996). Field theory of electromagnetic brain activity. Physical Review Letters, 77 (5), 960–963.CrossRefPubMedGoogle Scholar
  42. Johnson, B.W., Sleigh, J.W., Kirk, I.J., & Williams, M.L. (2003). High-density EEG mapping during general anaesthesia with xenon and propofol: a pilot study. Anaesthesia and Intensive Care, 31(2), 155–163.PubMedGoogle Scholar
  43. Kitamura, A., Marszalec, W., Yeh, J.Z., & Narahashi, T. (2002). Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. Journal de Pharmacologie, 304(1), 162–171.Google Scholar
  44. Kullmann, D.M., Ruiz, A., Rusakov, D.M., Scott, R., Semyanov, A., & Walker, M.C. (2005). Presynaptic, extrasynaptic and axonal GABA A receptors in the cns: where and why?. Progress in Biophysics and Molecular Biology, 87, 33–46.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Lee, U., Oh, G., Kim, S., Noh, G., Choi, B., & Mashour, G.A. (2010). Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: Evidence for adaptive reconfiguration. Anesthesiology, 113(5), 1081–1091.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Lewis, L.D., Weiner, V.S., Mukamel, E.A., Donoghue, J.A., Eskandar, E.N., Madsen, J.R., Anderson, W.S., Hochberg, L.R., Cash, S.S., Brown, E.N., & Purdon, P.L. (2012). Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 3377–3386.CrossRefGoogle Scholar
  47. Liley, D.T.J., & Bojak, I. (2005). Understanding the transition to seizure by modeling the epileptiform activity of general anaesthetic agents. Journal of Clinical Neurophysiology, 22, 300–313.PubMedGoogle Scholar
  48. Liley, D.T.J., & Walsh, M. (2013). The mesoscopic modeling of burst suppression during anesthesia. Frontiers in Computational Neuroscience, 7, 46.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Liley, D.T.J., & Wright, J.J. (1994). Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry. Network: Computation in Neural Systems, 5, 175–189.CrossRefGoogle Scholar
  50. Liley, D.T.J., Cadusch, P.J., & Dafilis, M.P. (2002). A spatially continuous mean field theory of electrocortical activity. Network: Computation in Neural Systems, 13, 67–113.CrossRefGoogle Scholar
  51. Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Peters, J., Luxen, A., & Franck, G. (1997). Functional neuroanatomy of human slow wave sleep. The Journal of Neuroscience, 17(8), 2807–2812.PubMedGoogle Scholar
  52. Massimini, M., Ferrarelli, F., Huber, R., Esser, S.K., Singh, H., & Tononi, G. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309, 2228–2232.CrossRefPubMedGoogle Scholar
  53. McCarthy, M.M., Brown, E.N., & Kopell, N. (2008). Potential network mechanisms mediating electroencephalographic beta rhythm changes during propofol-induced paradoxical excitation. The Journal of Neuroscience, 28(50), 13488–13504.PubMedCentralCrossRefPubMedGoogle Scholar
  54. Molaee-Ardekani, B., Senhadji, L., Shamsollahi, M.B., Vosoughi-Vahdat, B., & Wodey, E. (2007). Brain activity modeling in general anesthesia: Enhancing local mean-field models using a slow adaptive firing rate. Physical Review E, 76, 041911.CrossRefGoogle Scholar
  55. Mukamel, E.A., Pirondini, E., Babadi, B., Wong, K.F.k., Pierce, E.T., Harrell, P.G., Walsh, J.L., Salazar-Gomez, A.F., Cash, S.S., Eskandar, E.N., Weiner, V.S., Brown, E.N., & Purdon, P.L. (2014). A transition in brain state during propofol-induced unconsciousness. Journal of Neuroscience, 34(3), 839–845.PubMedCentralCrossRefPubMedGoogle Scholar
  56. Murphy, M., Bruno, M.A., Riedner, B.A., Boveroux, P., Noirhomme, Q., Landsness, E.C., Brichant, J.F., Phillips, C., Massimini, M., Laureys, S., Tononi, G., & Boly, M. (2011). Propofol anesthesia and sleep: A high-density EEG study. Sleep, 34(3), 283–291.PubMedCentralPubMedGoogle Scholar
  57. Nunez, P.L. (1974). The brain wave equation: A model for the EEG. Mathematical Biosciences, 21, 279–291.CrossRefGoogle Scholar
  58. Nunez, P.L. (1981). Electrical fields of the brain. Oxford: Oxford University Press.Google Scholar
  59. Nunez, P.L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. New York - Oxford: Oxford University Press.CrossRefGoogle Scholar
  60. Orser, B.A. (2006). Extrasynaptic GABA A receptors are critical targets for sedative-hypnotic drugs. Journal of Clinical Sleep Medicine, 2, 12–8.Google Scholar
  61. Pinotsis, D.A., Moran, R.J., & Friston, K.J. (2012). Dynamic causal modeling with neural fields. NeuroImage, 59(2), 1261–1274.PubMedCentralCrossRefPubMedGoogle Scholar
  62. Purdon, P.L., Pierce, E.T., Mukamel, E.A., Prerau, M.J., Walsh, J.L., Wong, K.F., Salazar-Gomez, A.F., Harrell, P.G., Sampson, A.L., Cimenser, A., Ching, S., Kopell, N.J., Tavares-Stoeckel, C., Habeeb, K., Merhar, R., & Brown, E.N. (2013). Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proceedings of the National Academy of Sciences of the United States of America, 110 (12), 1142–1151.CrossRefGoogle Scholar
  63. Reed, M.D., Yamashita, T.S., Marx, C.M., Myers, C.M., & Blumer, J.L. (1996). A pharmacokinetically based propofol dosing strategy for sedation of the critically ill, mechanically ventilated pediatric patient. Critical Care Medicine, 24(9), 1473–1481.CrossRefPubMedGoogle Scholar
  64. Rennie, C.J., Robinson, P.A., & Wright, J.J. (2002). Unified neurophysical model of EEG spectra and evoked potentials. Biological Cybernetics, 86, 457–471.CrossRefPubMedGoogle Scholar
  65. Robinson, P.A. (2003). Neurophysical theory of coherence and correlations of electroencephalographic signals. Journal of Theoretical Biology, 222, 163–175.CrossRefPubMedGoogle Scholar
  66. Robinson, P.A., Loxley, P.N., O’Connor, S.C., & Rennie, C.J. (2001b). Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Physical Review E, 63, 041909.CrossRefGoogle Scholar
  67. Robinson, P.A., Rennie, C.J., & Rowe, D.L. (2002). Dynamics of large-scale brain activity in normal arousal states and eplieptic seizures. Physical Review E, 65(4), 041924.CrossRefGoogle Scholar
  68. Robinson, P.A., Rennie, C.J., & Wright, J.J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Physical Review E, 56, 826–840.CrossRefGoogle Scholar
  69. Robinson, P.A., Wright, J.J., & Rennie, C.J. (1998). Synchronous oscillations in the cerebral cortex. Physical Review E, 57, 4578–4588.CrossRefGoogle Scholar
  70. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., & Rowe, D. (2001a). Prediction of electroencephalographic spectra from neurophysiology. Physical Review E, 63, 201903.Google Scholar
  71. Robinson, P.A., Rennie, C.J., Rowe, D.L., & O’Connor, S.C. (2004). Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Human Brain Mapping, 23, 53–72.CrossRefPubMedGoogle Scholar
  72. Rowe, D.L, Robinson, P.A., & Rennie, C.J. (2004). Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. Journal of Theoretical Biology, 231(3), 413–433.CrossRefPubMedGoogle Scholar
  73. Rudolph, U., & Antkowiak, B. (2004). Molecular and neuronal substrates for general anaesthetics. Nature Reviews Neuroscience, 5, 709–720.CrossRefPubMedGoogle Scholar
  74. San-Juan, D., Chiappa, K.H., & Cole, A.J. (2010). Propofol and the electroencephalogram. Clinical Neurophysiology, 121(7), 998–1006.CrossRefPubMedGoogle Scholar
  75. Sellers, K.K., Bennett, D.V., Hutt, A., & Frohlich, F. (2013). Anesthesia differentially modulates spontaneous network dynamics by cortical area and layer. Journal of Neurophysiology. in press.Google Scholar
  76. Semyanov, A., Walker, M.C., Kullmann, D.M., & Silver, R.A. (2004). Tonically active GABAA receptors: modulating gain and maintaining the tone. Trends in Neurosciences, 27(5), 262–269.Google Scholar
  77. Siegel, J.M. (2009). Sleep viewed as a state of adaptive inactivity. Nature. Reviews in the Neurosciences, 10, 747–753.Google Scholar
  78. Spiegler, A., Kiebel, S.J., Atay, F.M., & Knosche, T.R. (2010). Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants. NeuroImage, 52(3), 1041–1058.CrossRefPubMedGoogle Scholar
  79. Spiegler, A., Knosche, T.R., Schwab, K., Haueisen, J., & Atay, F.M. (2011). Modeling brain resonance phenomena using a neural mass model. PLoS Computational Biology, 7(12), 1002298.CrossRefGoogle Scholar
  80. Steriade, M., Contreras, D., Curro Dossi, R., & Nunez, A. (1993). The slow (< 1 hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. The Journal of Neuroscience, 13(8), 3284–3299.PubMedGoogle Scholar
  81. Steyn-Ross, M.L., Steyn-Ross, D.A., & Sleigh, J.W. (2004). Modelling general anaesthesia as a first-order phase transition in the cortex. Progress in Biophysics and Molecular Biology, 85(2-3), 369– 385.CrossRefPubMedGoogle Scholar
  82. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., & Liley, D.T.J. (1999). Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: Evidence for a general anesthetic-induced phase transition. Physical Review E, 60(6), 7299–7311.CrossRefGoogle Scholar
  83. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., & Wilcocks, L.C. (2001a). Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: I. a thermodynamic analogy. Physical Review E, 64, 011917.CrossRefGoogle Scholar
  84. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., & Wilcocks, L.C. (2001b). Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex: Ii. numerical simulations, spectra entropy, and correlation times. Physical Review E, 64, 011918.CrossRefGoogle Scholar
  85. Vanini, G., & Baghdoyan, H.A. (2013). Extrasynaptic GABA A receptors in rat pontine reticular formation increase wakefulness. Sleep, 36(3), 337–343.PubMedCentralPubMedGoogle Scholar
  86. Victor, J.D., Drover, J.D., Conte, M.M., & Schiff, N.D. (2011). Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proceedings of the National Academy of Sciences of the United States of America, 108, 15631– 15638.PubMedCentralCrossRefPubMedGoogle Scholar
  87. Vijayan, S., Ching, S., Cimenser, A., Purdon, P.L., Brown, E.N., & Kopell, N.J. (2013). Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness. The Journal of Neuroscience, 33(27), 11070–11075.PubMedCentralCrossRefPubMedGoogle Scholar
  88. Wieloch, T., & Nikolich, K. (2006). Mechanisms of neural plasticity following brain injury. Current Opinion in Neurobiology, 16(3), 258–264.CrossRefPubMedGoogle Scholar
  89. Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.PubMedCentralCrossRefPubMedGoogle Scholar
  90. Wilson, M.T., Sleigh, J.W., Steyn-Ross, A., & Steyn-Ross, M.L. (2006). General anesthetic-induced seizures can be explained by a mean-field model of cortical dynamics. Anesthesiology, 104(3), 588–593.CrossRefPubMedGoogle Scholar
  91. Wright, J.J., & Liley, D.T.J. (1996). Dynamics of the brain at global and microscopic scales: Neural networks and the EEG. Behavioral and Brain Sciences, 19, 285–320.CrossRefGoogle Scholar
  92. Ying, S., & Goldstein, P. (2001). Propofol effects on the thalamus: Modulation of GABAergic synaptic inhibition and suppression of neuronal excitability. Abstract Viewer/Itinerary Planner Washington. DC: Society for Neuroscience, 89(411).Google Scholar
  93. Ying, S.W., & Goldstein, P.A. (2005a). Propofol-block of SK channels in reticular thalamic neurons enhances GABAergic inhibition in relay neurons. Journal of Neurophysiology, 93, 1935–1948.Google Scholar
  94. Ying, S.W., & Goldstein, P.A. (2005b). Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABA A receptor chloride channels. Molecular Pain, 1, 2.PubMedCentralCrossRefPubMedGoogle Scholar
  95. Zhang, M., Wei, G.W., & Wei, C.H. (2002). Transition from intermittency to periodicity in lag synchronization in coupled roessler oscillators. Physical Review E, 65, 036202.Google Scholar
  96. Zhou, C., Liu, J., & Chen, X.D. (2012). General anesthesia mediated by effects on ion channels. World Journal of Critical Care Medicine, 1, 80–93.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.INRIA Grand Est - Nancy, Team NEUROSYSVillers-lès-NancyFrance
  2. 2.CNRSVandoeuvre-lès-NancyFrance
  3. 3.Université de LorraineVandoeuvre-lès-NancyFrance
  4. 4.University of AucklandHamiltonNew Zealand

Personalised recommendations