Journal of Computational Neuroscience

, Volume 39, Issue 1, pp 63–75 | Cite as

Action potential initiation in a multi-compartmental model with cooperatively gating Na channels in the axon initial segment

Article

Abstract

Somatic action potentials (AP) of cortical pyramidal neurons have characteristically high onset-rapidness. The onset of the AP waveform is an indirect measure for the ability of a neuron to respond to temporally fast-changing stimuli. Theoretical studies on the pyramidal neuron response usually involves a canonical Hodgkin-Huxley (HH) type ion channel gating model, which assumes statistically independent gating of each individual channel. However, cooperative activity of ion channels are observed for various cell types, meaning that the activity (e.g. opening) of one channel triggers the activity (e.g. opening) of a certain fraction of its neighbors and hence, these groups of channels behave as a unit. In this study, we describe a multi-compartmental conductance-based model with cooperatively gating voltage-gated Na channels in the axon initial segment. Our model successfully reproduced the somatic sharp AP onsets of cortical pyramidal neurons. The onset latencies from the initiation site to the soma and the conduction velocities were also in agreement with the previous experimental studies.

Keywords

Action potential Onset rapidness Cooperativity hypothesis Na channel Axon initial segment Multi-compartmental neuron model 

References

  1. Almers, W., & Stirling, C. (1984). Distribution of transport proteins over animal cell membranes. The Journal of Membrane Biology, 77(3), 169–186.PubMedCrossRefGoogle Scholar
  2. Angelides, K., Elmer, L., Loftus, D., & Elson, E. (1988). Distribution and lateral mobility of voltage-dependent sodium channels in neurons. The Journal of Cell Biology, 106(6), 1911–1925.PubMedCrossRefGoogle Scholar
  3. Baranauskas, G., & Martina, M. (2006). Sodium currents activate without a hodgkin-and-huxley-type delay in central mammalian neurons. The Journal of Neuroscience, 26, 671–684.PubMedCrossRefGoogle Scholar
  4. Baranauskas, G., Mukovskiy, A., Wolf, F., & Volgushev, M. (2010). The determinants of the onset dynamics of action potentials in a computational model. Neuroscience, 167(4), 1070–1090.PubMedCrossRefGoogle Scholar
  5. Bekkers, J., & Hauser, M. (2007). Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output. Proc Nal Acad Sci USA, 104, 11, 447–11, 452.CrossRefGoogle Scholar
  6. Boucsein, C., Tetzlaff, T., Meier, R., Aertsen, A., & Naundorf, B. (2009). Dynamical response properties of neocortical neuron ensembles: multiplicative versus additive noise. The Journal of Neuroscience, 29(4), 1006–1010.PubMedCrossRefGoogle Scholar
  7. Brette, R. (2013). Sharpness of spike initiation in neurons explained by compartmentalization. Plos Comput Biol, 9(12), e1003, 338.CrossRefGoogle Scholar
  8. Colbert, C., & Johnston, D. (1996). Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. The Journal of Neuroscience, 16(21), 6676–6686.PubMedGoogle Scholar
  9. Colbert, C., & Pan, E. (2002). Ion channel properties underlying axonal action potential initiation in pyramidal neurons. Nature Neuroscience, 5, 533–538.PubMedCrossRefGoogle Scholar
  10. Dekker, J., & Yellen, G. (2006). Cooperative gating between single hcn pacemaker channels. The Journal of General Physiology, 128(5), 561–567.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Dixon, R.E., Yuan, C., Cheng, E.P., NAvedo, M.F., & Santana, L.F. (2012). Ca2+ signaling amplification by oligomerization of l-type cav1.2 channels. Proc Nal Acad Sci, 109(5), 1749–1754.CrossRefGoogle Scholar
  12. Doyle, D., Cabral, J.M., Pfuetzner, R., Kuo, A., Gulbis, J., Cohen, S., Chait, B., & MacKinnon, R. (1998). The structure of the potassium channel: molecular basis of k+ conduction and selectivity. Science, 280 (5360), 69–77.PubMedCrossRefGoogle Scholar
  13. Dzhashiashvili, Y., Zhang, Y., Galinska, J., Lam, I., Grumet, M., & Salzer, J. (2007). Nodes of ranvier and axon initial segments are ankyrin-g-dependent domans that assemble by distinct mechanisms. The Journal of Cell Biology, 177, 857–870.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Computation, 13, 1285–1310.PubMedCrossRefGoogle Scholar
  15. Eyal, G., Mansvelder, H., de Kock C., & Segev, I. (2014). Dendrites impact the encoding capabilities of the axon. The Journal of Neuroscience, 34(24), 8063–8071.PubMedCrossRefGoogle Scholar
  16. Fleidervish, I., Lasser-Ross, N., Gutnick, M., & Ross, W. (2010). Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma. Nature Neuroscience, 13(7), 852–860.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fourcaud-Trocme, N., & Brunel, N. (2005). Dynamics of the instantaneous firing rate in response to changes in input statistics. Journal of Computational Neuroscience, 18(3), 311–321.PubMedCrossRefGoogle Scholar
  18. Fourcaud-Trocme, N., Hansel, D., van Vreeswijk, C., & Brunel, N. (2003). How spike generation mechanisms determine the neuronal response to fluctuating inputs. The Journal of Neuroscience, 23(37), 11, 628–11, 640.Google Scholar
  19. Gabelli, S.B., Boto, A., Kuhns, V.H., Bianchet, M.A., Farinelli, F., Aripala, S., Yoder, J., Jakoncic, J., Tomaselli, G.F., & Amzel, L.M. (2014). Regulation of the nav1.5 cytoplasmic domain by calmodulin. Nature Communications, 5, 5126.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Grubb, M., & Burrone, J. (2010). Building and maintaining the axon initial segment. Current Opinion in Neurobiology, 20(4), 481–488.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Häusser, M., Stuart, G., Racca, C., & Sakmann, B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron, 15(3), 637–647.PubMedCrossRefGoogle Scholar
  22. Hay, E., Schrmann, F., Markram, H., & Segev, I. (2013). Preserving axosomatic spiking features despite diverse dendritic morphology. Journal of Neurophysiology, 109, 2972–2981.PubMedCrossRefGoogle Scholar
  23. Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hu, W., Tian, C., Li, T., Yang, M., Hou, H., & Shu, Y. (2009). Distinct contributions of na(v)1.6 and na(v)1.2 in action potential initiation and backpropagation. Nature Neuroscience, 12(8), 996– 1002.PubMedCrossRefGoogle Scholar
  25. Huang, H. (2006). Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochimica et Biophysica Acta, 1758(9), 1292–1302.PubMedCrossRefGoogle Scholar
  26. Huang, M., Volgushev, M., & Wolf, F. (2012). A small fraction of strongly cooperative sodium channels boosts neuronal encoding of high frequencies. PLoS One, 7, e37629.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kole, M., & Stuart, G. (2008). Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience, 11(11), 1253–1255.PubMedCrossRefGoogle Scholar
  28. Kole, M., Ilschner, S., Kampa, B., Williams, S., Ruben, P., & Stuart, G. (2008). Is action potential threshold lowest in the axon? Nature Neuroscience, 11, 178–186.PubMedCrossRefGoogle Scholar
  29. Köndgen, H., Geisler, C., Fusi, S., Wang, X., Lüscher, H., & Giugliano, M. (2008). The dynamical response properties of neocortical neurons to temproally modulated noisy inputs in vitro. Cerebral Cortex, 18(9), 2086–2097.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Mainen, Z., Joerges, J., Huguenard, J., & Sejnowski, T.A. (1995). model of spike initiation in neocortical pyramidal neurons. Neuron, 15(6), 1427–1439.PubMedCrossRefGoogle Scholar
  31. Marx, S., Ondrias, K., & Marks, A. (1998). Coupled gating between individual skeletal muscle ca2+ release channels (ryanodine receptors). Science, 281(5378), 818–821.PubMedCrossRefGoogle Scholar
  32. Marx, S. O., Gaburjakova, J., Gaburjakova, M., Henrikson, C., Ondrias, K., & Marks, A. R. (2001). Coupled gating between cardiac calcium release channels (ryanodine receptors). Circulation Research, 88, 1151–1158.PubMedCrossRefGoogle Scholar
  33. McCormick, D., Shu, Y., & Yu, Y (2007). Neurophysiology: Hodgkin and huxley model - still standing?. Nature, 445, 1–2.CrossRefGoogle Scholar
  34. Molina, M., Barrera, F., Fernàndez, A., Poveda, J., Renart, M., Encinar, J., Riquelme, G., & Gonzàlez-Ros, J. (2006). Clustering and coupled gating modulate the activity in kcsa, a potassium channel model. The Journal of Biological Chemistry, 281(27), 18, 837–18, 848.CrossRefGoogle Scholar
  35. Naundorf, B., Geisel, T., & Wolf, F. (2005a). Action potential onset dynamics and the response speed of neuronal populations. Journal of Computational Neuroscience, 18, 297–309.PubMedCrossRefGoogle Scholar
  36. Naundorf, B., Geisel, T., & Wolf, F. (2005b). Dynamical response properties of a canonical model for type-i membranes. Neurocomputing, 20, 421–428.CrossRefGoogle Scholar
  37. Naundorf, B., Wolf, F., & Volgushev, M. (2006). Unique features of action potential initiation in cortical neurons. Nature, 440(7087), 1060–1063.PubMedCrossRefGoogle Scholar
  38. Naundorf, B., Wolf, F., & Volgushev, M. (2007). reply to: hodgkin-huxley model – still standing?. Nature, 445, E2–E3.CrossRefGoogle Scholar
  39. Neumcke, B., & Stämpfli, R. (1983). Alteration of the conductance of Na+ channels in the nodal membrane of frog nerve by holding potential and tetrodotoxin. Biochimica et Biophysica Acta, 727(1), 177–184.PubMedCrossRefGoogle Scholar
  40. Palmer, L., & Stuart, G. (2006). Site of action potential initiation in layer 5 pyramidal neurons. The Journal of Neuroscience, 26, 1854–1863.PubMedCrossRefGoogle Scholar
  41. Post, J., Leunissen-Bijvelt, J., Ruigrok, T., & Verkleij, A. (1985). Ultrastructural changes of sarcolemma and mitochondria in the isolated rabbit heart during ischemia and reperfusion. Biochimica et Biophysica Acta, 845 (1), 119–123.PubMedCrossRefGoogle Scholar
  42. Saito, A., Inui, M., Radermacher, M., Frank, J., & Fleischer, S. (1988). Ultrastructure of the calcium release channel of sarcoplasmic reticulum. The Journal of Cell Biology, 107(1), 211–219.PubMedCrossRefGoogle Scholar
  43. Schafer, D., Jha, S., Liu, F., Akella, T., McCullogh, L., & Rasband, M. (2009). Disruption of axon initial segment cytoskeleton is a new mechanism for neuronal injury. The Journal of Neuroscience, 29(42), 13, 242–13, 254.CrossRefGoogle Scholar
  44. Shu, Y., Duque, A., Yu, Y., Haider, B., & McCormick, D. (2007). Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. Journal of Neurophysiology, 97(1), 746–760.PubMedCrossRefGoogle Scholar
  45. Silberberg, S., & Magleby, K. (1997). Voltage-induced slow activation and deactivation of mechanosensitive channels in xenopus oocytes. The Journal of Physiology, 505(Pt 3), 551–569.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Sonkusare, S.K., Dalsgaard, Bonev, A.D., Hill-Eubanks, D.C., Kotlikoff, M.I., Scott, J.D., Santana, L.F., & Nelson, M.T. (2014). Akap150-dependent cooperative trpv4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Science Signaling, 7(333), ra66.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Stuart, G., & Schiller, J. (1997). Sakmann B Action potential initiation and propagation in rat neocortical pyramidal neurons. The Journal of Physiology, 505, 617–632.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Undrovinas, A., & Makielski, I.F.J. (1992). Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circulation Research, 71(5), 1231–1241.PubMedCrossRefGoogle Scholar
  49. Ursell, T., Huang, K., Peterson, E., & Phillips, R. (2007). Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Computational Biology, 3(5), e81.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Volgushev, M., Malyshev, A., Balaban, P., Chistiakova, M., & Volgushev, S. (2008). Wolf F Onset dynamics of action potentials in rat neocortical neurons and identified snail neurons : quantification of the difference. PLoS ONE, e1962, 3.Google Scholar
  51. Wang, X., & Buzsàki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16, 6402–6413.PubMedGoogle Scholar
  52. Wei, W., & Wolf, F. (2011). Spike onset dynamics and response speed in neuronal populations. Physical Review Letters, 106(8), 088, 102.CrossRefGoogle Scholar
  53. Wiesenfeld, K., & Moss, F. (1995). Stochastic resonance and the benefits of noise: from ice ages to crayfish and squids. Nature, 73(6509), 33–36.CrossRefGoogle Scholar
  54. Yu, Y., Shu, Y., & McCormick, D. (2008). Cortical action potential backpropogation explains spike threshold variability and rapid-onset kinetics. The Journal of Neuroscience, 28, 7260–7272.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Molecular Biology and GeneticsÜsküdar UniversityIstanbulTurkey
  2. 2.State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
  3. 3.Theoretical Neurophysics GroupMax Planck Institute for Self-Organization and DynamicsGöttingenGermany

Personalised recommendations