Journal of Computational Neuroscience

, Volume 38, Issue 1, pp 189–202 | Cite as

Modeling multiple time scale firing rate adaptation in a neural network of local field potentials

  • Brian Nils LundstromEmail author


In response to stimulus changes, the firing rates of many neurons adapt, such that stimulus change is emphasized. Previous work has emphasized that rate adaptation can span a wide range of time scales and produce time scale invariant power law adaptation. However, neuronal rate adaptation is typically modeled using single time scale dynamics, and constructing a conductance-based model with arbitrary adaptation dynamics is nontrivial. Here, a modeling approach is developed in which firing rate adaptation, or spike frequency adaptation, can be understood as a filtering of slow stimulus statistics. Adaptation dynamics are modeled by a stimulus filter, and quantified by measuring the phase leads of the firing rate in response to varying input frequencies. Arbitrary adaptation dynamics are approximated by a set of weighted exponentials with parameters obtained by fitting to a desired filter. With this approach it is straightforward to assess the effect of multiple time scale adaptation dynamics on neural networks. To demonstrate this, single time scale and power law adaptation were added to a network model of local field potentials. Rate adaptation enhanced the slow oscillations of the network and flattened the output power spectrum, dampening intrinsic network frequencies. Thus, rate adaptation may play an important role in network dynamics.


Neural networks Rate adaptation Local field potentials Slow oscillations Multiple time scale 



To Adrienne Fairhall, Matt Higgs, and John Oakley for insightful discussions and comments on the manuscript, and to the University of Washington Department of Neurology for support.

Conflict of interest

The author declares that he has no conflict of interest.


  1. Abel, H. J., Lee, J. C., Callaway, J. C., & Foehring, R. C. (2004). Relationships between intracellular calcium and afterhyperpolarizations in neocortical pyramidal neurons. Journal of Neurophysiology, 91, 324–335.PubMedCrossRefGoogle Scholar
  2. Adrian, E. D., & Zotterman, Y. (1926). The impulses produced by sensory nerve endings: part 2. The response of a single End-organ. The Journal of Physiology, 61, 151–171.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arfken, G. B., & Weber, H.-J. (1995). Mathematical methods for physicists. San Diego: Academic.Google Scholar
  4. Barlow, HB. (1961) Possible principles underlying the transformation of sensory messages. In: Sensory communication. In W Rosenblith(ed.), MIT Press.Google Scholar
  5. Barraza, D., Kita, H., & Wilson, C. J. (2009). Slow spike frequency adaptation in neurons of the rat subthalamic nucleus. Journal of Neurophysiology, 102, 3689–3697.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Benda, J., & Herz, A. V. (2003). A universal model for spike-frequency adaptation. Neural Computation, 15, 2523–2564.PubMedCrossRefGoogle Scholar
  7. Brenner, N., de Ruyter, B. W., & van Steveninck, R. (2000). Adaptive rescaling maximizes information transmission. Neuron, 26, 695–702.PubMedCrossRefGoogle Scholar
  8. Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89, 2707–2725.PubMedCrossRefGoogle Scholar
  9. Connor, J. A., & Stevens, C. F. (1971). Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. The Journal of Physiology, 213, 31–53.PubMedCentralPubMedCrossRefGoogle Scholar
  10. David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20, 1743–1755.PubMedCrossRefGoogle Scholar
  11. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: Massachusetts Institute of Technology Press.Google Scholar
  12. de Biase, S., Gigli, G. L., Valente, M., & Merlino, G. (2014). Lacosamide for the treatment of epilepsy. Expert Opinion on Drug Metabolism & Toxicology, 10, 459–468.CrossRefGoogle Scholar
  13. Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., & Friston, K. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Computational Biology, 4, e1000092.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Demanuele, C., Broyd, S. J., Sonuga-Barke, E. J., & James, C. (2013). Neuronal oscillations in the EEG under varying cognitive load: a comparative study between slow waves and faster oscillations. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 124, 247–262.CrossRefGoogle Scholar
  15. Descalzo, V. F., Nowak, L. G., Brumberg, J. C., McCormick, D. A., & Sanchez-Vives, M. V. (2005). Slow adaptation in fast-spiking neurons of visual cortex. Journal of Neurophysiology, 93, 1111–1118.PubMedCrossRefGoogle Scholar
  16. Destexhe, A., Hughes, S. W., Rudolph, M., & Crunelli, V. (2007). Are corticothalamic ‘up’ states fragments of wakefulness? Trends in Neurosciences, 30, 334–342.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Drew, P. J., & Abbott, L. F. (2006). Models and properties of power-law adaptation in neural systems. Journal of Neurophysiology, 96, 826–833.PubMedCrossRefGoogle Scholar
  18. Ermentrout, B. (1998). Linearization of F-I curves by adaptation. Neural Computation, 10, 1721–1729.PubMedCrossRefGoogle Scholar
  19. Ermentrout, G. B., & Cowan, J. D. (1979). Temporal oscillations in neuronal nets. Journal of Mathematical Biology, 7, 265–280.PubMedCrossRefGoogle Scholar
  20. Fairhall A, Bialek, W. (2002) Adaptive spike coding. In: The Handbook of Brain Theory and Neural Networks. In M. Arbib (ed.), MIT Press.Google Scholar
  21. Fairhall, A. L., Lewen, G. D., de Ruyter, B. W., & van Steveninck, R. (2001a). Multiple timescales of adaptation in a neural code. In T. K. Leen (Ed.), Advances in Neural Information Processing Systems 13 (pp. 124–130). Cambridge: MIT Press.Google Scholar
  22. Fairhall, A. L., Lewen, G. D., Bialek, W., & de Ruyter Van Steveninck, R. R. (2001b). Efficiency and ambiguity in an adaptive neural code. Nature, 412, 787–792.PubMedCrossRefGoogle Scholar
  23. Fellous, J. M., & Sejnowski, T. J. (2000). Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus, 10, 187–197.PubMedCrossRefGoogle Scholar
  24. Fleidervish, I. A., Friedman, A., & Gutnick, M. J. (1996). Slow inactivation of Na + current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. The Journal of Physiology, 493(Pt 1), 83–97.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models : single neurons, populations, plasticity. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Harris, J., & Stöcker, H. (1998). Handbook of mathematics and computational science. New York: Springer.CrossRefGoogle Scholar
  27. Higgs, M. H., Slee, S. J., & Spain, W. J. (2006). Diversity of gain modulation by noise in neocortical neurons: regulation by the slow afterhyperpolarization conductance. The Journal of Neuroscience, 26, 8787–8799.PubMedCrossRefGoogle Scholar
  28. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press.Google Scholar
  30. Jansen, B., & Rit, V. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73, 357–366.PubMedCrossRefGoogle Scholar
  31. Koch, C. (1999). Biophysics of computation: information processing in single neurons. New York: Oxford University Press.Google Scholar
  32. La Camera, G., Rauch, A., Luscher, H. R., Senn, W., & Fusi, S. (2004). Minimal models of adapted neuronal response to in vivo-like input currents. Neural Computation, 16, 2101–2124.PubMedCrossRefGoogle Scholar
  33. La Camera, G., Rauch, A., Thurbon, D., Luscher, H. R., Senn, W., & Fusi, S. (2006). Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. Journal of Neurophysiology, 96(6), 3448–64.PubMedCrossRefGoogle Scholar
  34. Liu, Y. H., & Wang, X. J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience, 10, 25–45.PubMedCrossRefGoogle Scholar
  35. Lundqvist, M., Herman, P., Palva, M., Palva, S., Silverstein, D., & Lansner, A. (2013). Stimulus detection rate and latency, firing rates and 1-40Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model. NeuroImage, 83, 458–471.PubMedCrossRefGoogle Scholar
  36. Lundstrom, B. N., Higgs, M. H., Spain, W. J., & Fairhall, A. L. (2008). Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience, 11, 1335–1342.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lundstrom. BN., Hong, S., Higgs, MH., Fairhall, AL. (2008b) Two Computational Regimes of a Single-Compartment Neuron Separated by a Planar Boundary in Conductance Space. Neural Comput Google Scholar
  38. Lundstrom, B. N., Famulare, M., Sorensen, L. B., Spain, W. J., & Fairhall, A. L. (2009). Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons. Journal of Computational Neuroscience, 27, 277–290.PubMedCrossRefGoogle Scholar
  39. Lundstrom, B. N., Fairhall, A. L., & Maravall, M. (2010). Multiple timescale encoding of slowly varying whisker stimulus envelope in cortical and thalamic neurons in vivo. The Journal of Neuroscience, 30, 5071–5077.PubMedCrossRefGoogle Scholar
  40. Madison, D. V., & Nicoll, R. A. (1984). Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. The Journal of Physiology, 354, 319–331.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Monto, S., Palva, S., Voipio, J., & Palva, J. M. (2008). Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. The Journal of Neuroscience, 28, 8268–8272.PubMedCrossRefGoogle Scholar
  42. Moran, R., Pinotsis, D. A., & Friston, K. (2013). Neural masses and fields in dynamic causal modeling. Frontiers in Computational Neuroscience, 7, 57.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain : the neurophysics of EEG. Oxford: Oxford University Press.CrossRefGoogle Scholar
  44. Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-time signal processing. Upper Saddle River: Prentice Hall.Google Scholar
  45. Pozzorini, C., Naud, R., Mensi, S., & Gerstner, W. (2013). Temporal whitening by power-law adaptation in neocortical neurons. Nature Neuroscience, 16, 942–948.PubMedCrossRefGoogle Scholar
  46. Puccini, G. D., Sanchez-Vives, M. V., & Compte, A. (2007). Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits. PLoS Computational Biology, 3, e82.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Sanchez-Vives, M. V., Nowak, L. G., & McCormick, D. A. (2000). Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. The Journal of Neuroscience, 20, 4286–4299.PubMedGoogle Scholar
  48. Schwindt, P. C., Spain, W. J., Foehring, R. C., Chubb, M. C., & Crill, W. E. (1988). Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. Journal of Neurophysiology, 59, 450–467.PubMedGoogle Scholar
  49. Shriki, O., Hansel, D., & Sompolinsky, H. (2003). Rate models for conductance-based cortical neuronal networks. Neural Computation, 15, 1809–1841.PubMedCrossRefGoogle Scholar
  50. Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137, 1087–1106.PubMedCrossRefGoogle Scholar
  51. Steriade, M., Contreras, D., Curro Dossi, R., & Nunez, A. (1993). The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. The Journal of Neuroscience, 13, 3284–3299.PubMedGoogle Scholar
  52. Thorson, J., & Biederman-Thorson, M. (1974). Distributed relaxation processes in sensory adaptation. Science, 183, 161–172.PubMedCrossRefGoogle Scholar
  53. Trappenberg, T. P. (2002). Fundamentals of Computational Neuroscience. USA: Oxford University Press.Google Scholar
  54. Tripp, B. P., & Eliasmith, C. (2010). Population models of temporal differentiation. Neural Computation, 22, 621–659.PubMedCrossRefGoogle Scholar
  55. Ulrych, T., & Lasserre, M. (1966). Minimum-phase. Canadian Journal of Exploration Geophysics, 2, 22–32.Google Scholar
  56. Vanhatalo, S., Palva, J. M., Holmes, M. D., Miller, J. W., Voipio, J., & Kaila, K. (2004). Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proceedings of the National Academy of Sciences of the United States of America, 101, 5053–5057.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Vinagre, B., Podlubny, I., Hernandez, A., & Feliu, V. (2000). Some approximations of fractional order operators used in control theory and applications. Fractional Calculus and Applied Analysis, 3, 231–248.Google Scholar
  58. Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79, 1549–1566.PubMedGoogle Scholar
  59. Wark, B., Lundstrom, B. N., & Fairhall, A. (2007). Sensory adaptation. Current Opinion in Neurobiology, 17, 423–429.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wendling, F., Bellanger, J. J., Bartolomei, F., & Chauvel, P. (2000). Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biological Cybernetics, 83, 367–378.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of WashingtonSeattleUSA

Personalised recommendations