Journal of Computational Neuroscience

, Volume 37, Issue 3, pp 549–568 | Cite as

A neural mass model based on single cell dynamics to model pathophysiology

  • Bas-Jan ZandtEmail author
  • Sid Visser
  • Michel J. A. M. van Putten
  • Bennie ten Haken


Neural mass models are successful in modeling brain rhythms as observed in macroscopic measurements such as the electroencephalogram (EEG). While the synaptic current is explicitly modeled in current models, the single cell electrophysiology is not taken into account. To allow for investigations of the effects of channel pathologies, channel blockers and ion concentrations on macroscopic activity, we formulate neural mass equations explicitly incorporating the single cell dynamics by using a bottom-up approach. The mean and variance of the firing rate and synaptic input distributions are modeled. The firing rate curve (F(I)-curve) is used as link between the single cell and macroscopic dynamics. We show that this model accurately reproduces the behavior of two populations of synaptically connected Hodgkin-Huxley neurons, also in non-steady state.


Mean field Neural mass Recurring network Firing rate curve Pathology Hodgkin-Huxley Variance Channel blockers 



This work was financially supported by Ministerie van Economische Zaken, Provincie Overijssel and Provincie Gelderland through the ViPBrainNetworks project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Allen, C., & Stevens, C.F. (1994). An evaluation of causes for unreliability of synaptic transmission. Proceedings National Academy Science USA, 383 (10), 380–10.Google Scholar
  2. Amit, D., & Brunel, N. (1997). Dynamics of a recurrent network of spiking neurons before and following learning Network Computation in Neural Systems.Google Scholar
  3. Baladron, J., Fasoli, D., Faugeras, O., Touboul, J. (2012). Mean-field description and propagation of chaos in networks of hodgkin-huxley and fitzhugh-nagumo neurons. Journal Mathematics Neuroscience, 2 (1), 10. doi: 10.1186/2190-8567-2-10.CrossRefGoogle Scholar
  4. Bazhenov, M., Timofeev, I., Frhlich, F., Sejnowski, T.J. (2008). Cellular and network mechanisms of electrographic seizures. Drug Discovery Today Dis Models, 5 (1), 45–57. doi: 10.1016/j.ddmod.2008.07.005.CrossRefGoogle Scholar
  5. Bhattacharya, B.S., Coyle, D., Maguire, L.P. (2011). A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer’s disease. Neural networks : the official journal of the International Neural Network Society, 24 (6), 631–45. doi: 10.1016/j.neunet.2011.02.009.CrossRefGoogle Scholar
  6. Chizhov, A., & Graham, L. (2007). Population model of hippocampal pyramidal neurons, linking a refractory density approach to conductance-based neurons. Physical Review E, 75(1) (011), 924. doi: 10.1103/PhysRevE.75.011924.Google Scholar
  7. De Schutter, E. (2010). Computational Modeling Methods for Neuroscientists. Mit Press, chap, 6. URL
  8. Deco, G., Jirsa, V.K., Pa, Robinson, Breakspear, M., Friston, K. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS computational biology, 4(8) (e1000), 092. doi: 10.1371/journal.pcbi.1000092.Google Scholar
  9. Dreier, J.P. (2011). The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nature medicine, 17 (4), 439–47. doi: 10.1038/nm.2333.PubMedCrossRefGoogle Scholar
  10. Faugeras, O., Touboul, J., Cessac, B. (2009). A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Frontiers in computational neuroscience, 3 (February), 1. doi: 10.3389/neuro.10.001.2009.PubMedCentralPubMedGoogle Scholar
  11. Fröhlich, F., Bazhenov, M., Iragui-Madoz, V., Sejnowski, T.J. (2008). Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist, 14 (5), 422–433. doi: 10.1177/1073858408317955.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Galtier, M.N., & Touboul, J. (2013). Macroscopic equations governing noisy spiking neuronal populations with linear synapses. PLoS One, 8(11) (e78), 917. doi: 10.1371/journal.pone.0078917.Google Scholar
  13. Grefkes, C., & Fink, G.R. (2011). Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain : a journal of neurology, 134 (Pt 5), 1264–76. doi: 10.1093/brain/awr033.CrossRefGoogle Scholar
  14. Hindriks, R., & Putten, van MJaM (2012). Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. NeuroImage, 60 (4), 2323–34. doi: 10.1016/j.neuroimage.2012.02.042.PubMedCrossRefGoogle Scholar
  15. Hines, M.L., Morse, T., Migliore, M., Carnevale, N.T., Shepherd, G.M. (2004). Modeldb: A database to support computational neuroscience. Journal Computational Neuroscience, 17 (1), 7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e.CrossRefGoogle Scholar
  16. Hocepied, G., Legros, B., Van Bogaert, P., Grenez, F., Nonclercq, A. (2013). Early detection of epileptic seizures based on parameter identification of neural mass model. Computer Biology Medicine, 43 (11), 1773–1782. doi: 10.1016/j.compbiomed.2013.08.022.CrossRefGoogle Scholar
  17. Holt, G. (1997). A critical reexamination of some assumptions and implications of cable theory in neurobiology. PhD thesis: California Institute of Technology. URL
  18. Hutt, A. (2012). The population firing rate in the presence of GABAergic tonic inhibition in single neurons and application to general anaesthesia. Cognitive neurodynamics, 6 (3), 227–37. doi: 10.1007/s11571-011-9182-9.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Hutt, A. (2013). The anesthetic propofol shifts the frequency of maximum spectral power in eeg during general anesthesia: analytical insights from a linear model. Front Computational Neuroscience, 7, 2. doi: 10.3389/fncom.2013.00002.CrossRefGoogle Scholar
  20. Izhikevich, E.M. (2007). Dynamical Systems in Neuroscience The Geometry of Excitability and Bursting: Computational neuroscience, vol First. MIT Press. URL
  21. Jansen, B.H., & Rit, V.G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biology Cybernetics, 73 (4), 357–366.CrossRefGoogle Scholar
  22. Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2002). A spatially continuous mean field theory of electrocortical activity. Network (Bristol England), 13 (1), 67–113.CrossRefGoogle Scholar
  23. Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structure, i: neuronal noise sources. Neural Computation, 11 (8), 1797–1829.PubMedCrossRefGoogle Scholar
  24. Marreiros, A.C., Daunizeau, J., Kiebel, S.J., Friston, K.J. (2008). Population dynamics: variance and the sigmoid activation function. NeuroImage, 42 (1), 147–57. doi: 10.1016/j.neuroimage.2008.04.239.PubMedCrossRefGoogle Scholar
  25. Meisler, M.H., & Kearney, J.A. (2005). Sodium channel mutations in epilepsy and other neurological disorders. Journal Clinical Investigation, 115 (8), 2010–2017. doi: 10.1172/JCI25466.CrossRefGoogle Scholar
  26. Moran, R., Pinotsis, D.A., Friston, K. (2013). Neural masses and fields in dynamic causal modeling. Front Computational Neuroscience, 7, 57. doi: 10.3389/fncom.2013.00057.CrossRefGoogle Scholar
  27. Ostojic, S., & Brunel, N. (2011). From spiking neuron models to linear-nonlinear models. PLoS computational biology, 7(1) (e1001), 056. doi: 10.1371/journal.pcbi.1001056.Google Scholar
  28. van Putten M.J., & Zandt B.J. (2013). Neural Mass modeling for predicting seizures. Clinical Neurophysiology. doi: 10.1016/j.clinph.2013.11.013.
  29. Robinson, P.A., Rennie, C.J., Wright, J.J., Bahramali, H., Gordon, E., Rowe, D.L. (2001). Prediction of electroencephalographic spectra from neurophysiology. Physics Review E Statistics Nonlinear Soft Matter Physics, 63(2 Pt 1) (021), 903.Google Scholar
  30. Pa, Robinson, Wu, H., Kim, J.W. (2008). Neural rate equations for bursting dynamics derived from conductance-based equations. Journal of theoretical biology, 250 (4), 663–72. doi: 10.1016/j.jtbi.2007.10.020.CrossRefGoogle Scholar
  31. Schevon, C.A., Ng, S.K., Cappell, J., Goodman, R.R., McKhann, G Jr, Waziri, A., Branner, A., Sosunov, A., Schroeder, C.E., Emerson, R.G. (2008). Microphysiology of epileptiform activity in human neocortex. Journal Clinical Neurophysiol, 25 (6), 321–330. doi: 10.1097/WNP.0b013e31818e8010.CrossRefGoogle Scholar
  32. Shriki, O., Hansel, D., Sompolinsky, H. (2003). Rate models for conductance-based cortical neuronal networks. Neural computation, 15 (8), 1809–41. doi: 10.1162/08997660360675053.PubMedCrossRefGoogle Scholar
  33. Somjen, G. (2004). Ions in the Brain: Normal Function, Seizures and Stroke. USA: Oxford University Press.
  34. Somjen, G.G. (2001). Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiology Reviews, 81 (3), 1065–1096.Google Scholar
  35. Stead, M., Bower, M., Brinkmann, B.H., Lee, K., Marsh, W.R., Meyer, F.B., Litt, B., Van Gompel, J., Worrell, G.A. (2010). Microseizures and the spatiotemporal scales of human partial epilepsy. Brain, 133 (9), 2789–2797. doi: 10.1093/brain/awq190.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Tjepkema-Cloostermans, M.C., Hindriks, R., Hofmeijer, J., van Putten MJAM (2013). Generalized periodic discharges after acute cerebral ischemia: Reflection of selective synaptic failure?. Clinical Neurophysiol. doi: 10.1016/j.clinph.2013.08.005.
  37. Touboul, J., Hermann, G., Faugeras, O. (2012). Noise-induced behaviors in neural mean field dynamics. SIAM Journal on Applied Dynamical Systems, 11 (1), 49–81. doi: 10.1137/110832392. Scholar
  38. Victor, J.D., Drover, J.D., Conte, M.M., Schiff, N.D. (2011). Mean-field modeling of thalamocortical dynamics and a model-driven approach to EEG analysis. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl, 15, 631–8. doi: 10.1073/pnas.1012168108.Google Scholar
  39. Visser, S., & Van Gils, S. (2014). Lumping Izhikevich neurons. EPJ Nonlinear Biomedical Physics, 2 (1), 6. doi: 10.1140/epjnbp19. URL
  40. Wilson, H.R., & Cowan, J.D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical journal, 12 (1), 1–24. doi: 10.1016/S0006-3495(72)86068-5.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Zandt, B.J., ten Haken, B., van Dijk, J.G., van Putten, M J.A.M. (2011). Neural dynamics during anoxia and the ”wave of death”. PLoS One, 6(7) (e22), 127. doi: 10.1371/journal.pone.0022127.Google Scholar
  42. Ziburkus, J., Cressman, J.R., Barreto, E., Schiff, S.J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. Journal Neurophysiology, 95 (6), 3948–3954. doi: 10.1152/jn.01378.2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bas-Jan Zandt
    • 1
    Email author
  • Sid Visser
    • 2
  • Michel J. A. M. van Putten
    • 1
  • Bennie ten Haken
    • 1
  1. 1.MIRA - Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands
  2. 2.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations