Journal of Computational Neuroscience

, Volume 37, Issue 2, pp 193–208 | Cite as

Role of frequency mismatch in neuronal communication through coherence

  • Belén SancristóbalEmail author
  • Raul Vicente
  • Jordi Garcia-Ojalvo


Neuronal gamma oscillations have been described in local field potentials of different brain regions of multiple species. Gamma oscillations are thought to reflect rhythmic synaptic activity organized by inhibitory interneurons. While several aspects of gamma rhythmogenesis are relatively well understood, we have much less solid evidence about how gamma oscillations contribute to information processing in neuronal circuits. One popular hypothesis states that a flexible routing of information between distant populations occurs via the control of the phase or coherence between their respective oscillations. Here, we investigate how a mismatch between the frequencies of gamma oscillations from two populations affects their interaction. In particular, we explore a biophysical model of the reciprocal interaction between two cortical areas displaying gamma oscillations at different frequencies, and quantify their phase coherence and communication efficiency. We observed that a moderate excitatory coupling between the two areas leads to a decrease in their frequency detuning, up to ∼6 Hz, with no frequency locking arising between the gamma peaks. Importantly, for similar gamma peak frequencies a zero phase difference emerges for both LFP and MUA despite small axonal delays. For increasing frequency detunings we found a significant decrease in the phase coherence (at non-zero phase lag) between the MUAs but not the LFPs of the two areas. Such difference between LFPs and MUAs behavior is due to the misalignment between the arrival of afferent synaptic currents and the local excitability windows. To test the efficiency of communication we evaluated the success of transferring rate-modulations between the two areas. Our results indicate that once two populations lock their peak frequencies, an optimal phase relation for communication appears. However, the sensitivity of locking to frequency mismatch suggests that only a precise and active control of gamma frequency could enable the selection of communication channels and their directionality.


Gamma neuronal oscillations Frequency detuning Communication through coherence 



R.V. thanks Luiz Lana, Jaan Aru, and David Eriksson for fruitful discussions. The authors also thank Pascal Fries for early discussions on the problem of frequency detuning for CTC. This work has been financially supported by the Ministerio de Ciencia e Innovación (project FIS2012-37655). J.G.O. also acknowledges financial support from the ICREA Academia program. R.V. acknowledges financial support from the Hertie Foundation and Estonian Research Council (project BioMedIT SMTAT13061T).

Conflict of interests

The authors declare that they have no conflict of interest.


  1. Battaglia, D., Witt, A., Wolf, F., Geisel T. (2012). Dynamic effective connectivity of inter-areal brain circuits. PLoS Computational Biology, 8.3, e1002438. doi: 10.1371/journal.pcbi.1002438.CrossRefGoogle Scholar
  2. Berens, P., Logothetis, N.K., Tolias, A.S. (2012). Visual population codes - towards a common multivariate framework for cell recording and functional imaging. In Local field potentials, BOLD and spiking activity: relationships and physiological mechanisms (pp. 599–624). MIT Press.Google Scholar
  3. Bokil, H., Andrews, P., Kulkarni, J.E., Mehta, S., Mitra, P.P. (2010). Chronux: a platform for analyzing neural signals. Journal of Neuroscience Methods, 192.1, 146–51. doi: 10.1016/j.jneumeth.2010.06.020.CrossRefGoogle Scholar
  4. Bosman, C.A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A.M., Womelsdorf, T., Rubehn, B., Stieglitz, T., De Weerd, P., Fries, P. (2012). Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 75.5, 875–888. doi: 10.1016/j.neuron.2012.06.037.CrossRefGoogle Scholar
  5. Brunel, N., & Wang, X.-J. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. Journal of Neurophysiology, 90.1, 415–430. doi: 10.1152/jn.01095.2002.CrossRefGoogle Scholar
  6. Buehlmann, A., & Deco, G. (2010). Optimal information transfer in the cortex through synchronization. PLoS Computational Biology, 6(9). doi: 10.1371/journal.pcbi.1000934.
  7. Buhl, E.H., Halasy, K., Somogyi, P. (1994). Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites. Nature, 368.6474, 823–828. doi: 10.1038/368823a0.CrossRefGoogle Scholar
  8. Bush, P., & Sejnowski, T. (1996). Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models. Jouranl of Computational Neuroscience, 3.2, 91–110.CrossRefGoogle Scholar
  9. Buzsáki, G., Anastassiou, C.A., Koch, C. (2012). The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience, 13.6, 407–420.CrossRefGoogle Scholar
  10. Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304.5679, 1926–1929. doi: 10.1126/science.1099745.CrossRefGoogle Scholar
  11. Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual Review of Neuroscience, 35, 203–225. doi: 10.1146/annurev-neuro-062111-150444.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H., Moore, C.I. (2009). Driving fastspiking cells induces gamma rhythm and controls sensory responses. Nature, 459.7247, 663–667. doi: 10.1038/nature08002.CrossRefGoogle Scholar
  13. Eriksson, D., Vicente, R., Schmidt, K. (2011). A linear model of phase dependent power correlations in neuronal oscillations. Frontiers in Computational Neuroscience, 5(34). doi: 10.3389/fncom.2011.00034.
  14. Fisahn, A., Pike, F.G., Buhl, E.H., Paulsen, O. (1998). Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature, 394.6689, 186–189. doi: 10.1038/28179.CrossRefGoogle Scholar
  15. Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9.10, 474–480. doi: 10.1016/j.tics.2005.08.011.CrossRefGoogle Scholar
  16. Garcia-Ojalvo, J., & Sancho, J.M. (1999). Noise in spatially extended systems. New York: Springer-Verlag.CrossRefGoogle Scholar
  17. Gruber, T., Müller, M.M., Keil, A., Elbert, T. (1999). Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110.12, 2074–2085.CrossRefGoogle Scholar
  18. Gutfreund, Y., Yarom, Y., Segev, I. (1995). Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. Journal of Physiology, 483(Pt 3), 621–640.PubMedCentralPubMedGoogle Scholar
  19. Henrie, J.A., & Shapley, R. (2005). LFP power spectra in V1 cortex: the graded effect of stimulus contrast. Journal of Neurophysiology, 94.1, 479–490. doi: 10.1152/jn.00919.2004.CrossRefGoogle Scholar
  20. Houston, C.M., Bright, D.P., Sivilotti, L.G., Beato, M., Smart, T.G. (2009). Intracellular chloride ions regulate the time course of GABA-mediated inhibitory synaptic transmission. Journal of Neuroscience, 29.33, 10416–10423. doi: 10.1523/JNEUROSCI.1670-09.2009.CrossRefGoogle Scholar
  21. Kang, Y., Kaneko, T., Ohishi, H., Endo, K., Araki, T. (1994). Spatiotemporally differential inhibition of pyramidal cells in the cat motor cortex. Journal of Neurophysiology, 71.1, 280–293.Google Scholar
  22. Kaplan, E., Purpura, K., Shapley, R.M. (1987). Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. Journal of Physiology, 391, 267–288.PubMedCentralPubMedGoogle Scholar
  23. Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7.6, 476–486.CrossRefGoogle Scholar
  24. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5.10, 793–807. doi: 10.1038/nrn1519.CrossRefGoogle Scholar
  25. Mazzoni, A., Panzeri, S., Logothetis, N.K., Brunel, N. (2008). Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Computational Biology, 4.12, e1000239. doi: 10.1371/journal.pcbi.1000239.CrossRefGoogle Scholar
  26. Mountcastle, V.B. (1998). Perceptual neuroscience: the cerebral cortex. Cambridge: Harvard University Press.Google Scholar
  27. Pikovsky, A., Rosenblum, M., Kurths, J. (2001). Synchronization. A universal concept in nonlinear sciences. Cambridge University Press.Google Scholar
  28. Puia, G., Costa, E., Vicini, S. (1994). Functional diversity of GABA activated Cl- currents in Purkinje versus granule neurons in rat cerebellar slices. Neuron, 12.1, 117–126.CrossRefGoogle Scholar
  29. Pulvermüller, F., Birbaumer, N., Lutzenberger, W., Mohr, B. (1997). High-frequency brain activity: its possible role in attention, perception and language processing. Progress in Neurobiology, 52.5, 427–445.CrossRefGoogle Scholar
  30. Ray, S., & Maunsell, J.H.R. (2010). Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron, 67.5, 885–896. doi: 10.1016/j.neuron.2010.08.004.CrossRefGoogle Scholar
  31. Roberts, M.J., Lowet, E., Brunet, N.M., Ter Wal, M., Tiesinga, P., Fries, P., De Weerd, P. (2013). Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron, 78.3, 523–536. doi: 10.1016/j.neuron.2013.03.003.CrossRefGoogle Scholar
  32. Roepstorff, A., & Lambert, J.D. (1994). Factors contributing to the decay of the stimulus-evoked IPSC in rat hippocampal CA1 neurons. Journal of Neurophysiology, 72.6, 2911–2926.Google Scholar
  33. Sancristóbal, B., Vicente, R., Sancho, J.M., Garcia-Ojalvo, J. (2013). Emergent bimodal firing patterns implement different encoding strategies during gamma-band oscillations. Frontiers in Computational Neuroscience, 7, 18. doi: 10.3389/fncom.2013.00018.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Schoffelen, J.-M., Oostenveld, R., Fries, P. (2005). Neuronal coherence as a mechanism of effective corticospinal interaction. Science, 308.5718, 111–113. doi: 10.1126/science.1107027.CrossRefGoogle Scholar
  35. Shadlen, M.N., & Movshon, J.A. (1999). Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron, 24.1(67–77), 111–125.Google Scholar
  36. Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24.1(49–65), 111–125.Google Scholar
  37. Tallon-Baudry, C., Bertrand, O., Delpuech, C., Permier, J. (1997). Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience, 17.2, 722–734.Google Scholar
  38. Thomson, D.J. (1982). Spectrum estimation and harmonic analysis. In Proceedings of the IEEE (Vol. 70.9, pp. 1055–1096). doi: 10.1109/PROC.1982.12433,∖_all.jsp?arnumber=1456701.
  39. Vicente, R., Gollo, L.L., Mirasso, C.R., Fischer, I., Pipa, G. (2008). Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 105.44, 17157–17162. doi: 10.1073/pnas.0809353105.
  40. Voges, N., Guijarro, C., Aertsen, A., Rotter, S. (2010a). Models of cortical networks with long-range patchy projections. Journal of Computational Neuroscience, 28.1, 137–154. doi: 10.1007/s10827-009-0193-z.CrossRefGoogle Scholar
  41. Voges, N., Schüz, A., Aertsen, A., Rotter, S. (2010b). A modeler’s view on the spatial structure of intrinsic horizontal connectivity in the neocortex. Progress in Neurobiology, 92.3, 277–292. doi: 10.1016/j.pneurobio.2010.05.001.CrossRefGoogle Scholar
  42. Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of ’smallworld’ networks. Nature, 393.6684, 440–442. doi: 10.1038/30918.CrossRefGoogle Scholar
  43. Whittington, M.A., Traub, R.D., Jefferys, J.G. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature, 373.6515, 612–615. doi: 10.1038/373612a0.CrossRefGoogle Scholar
  44. Womelsdorf, T., Schoffelen, J.M., Oostenveld, R., Singer, W., Desimone, R., Engel, A.K., Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316.5831, 1609–1612. doi: 10.1126/science.1139597.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Belén Sancristóbal
    • 1
    • 2
    Email author
  • Raul Vicente
    • 3
    • 4
  • Jordi Garcia-Ojalvo
    • 1
    • 2
  1. 1.Departament of Experimental and Health SciencesUniversitat Pompeu Fabra, Barcelona Biomedical Research ParkBarcelonaSpain
  2. 2.Departament de Física i Enginyeria NuclearUniversitat Politècnica de Catalunya, Edif. GaiaTerrassaSpain
  3. 3.Max-Planck Institute for Brain ResearchFrankfurt am MainGermany
  4. 4.Institute of Computer ScienceFaculty of Mathematics and Computer Science, University of TartuTartuEstonia

Personalised recommendations