Journal of Computational Neuroscience

, Volume 36, Issue 3, pp 483–497 | Cite as

The role of dendritic spine morphology in the compartmentalization and delivery of surface receptors

  • Cory M. Simon
  • Iain Hepburn
  • Weiliang Chen
  • Erik De Schutter


Since AMPA receptors are major molecular players in both short- and long-term plasticity, it is important to identify the time-scales of and factors affecting the lateral diffusion of AMPARs on the dendrite surface. Using a mathematical model, we study how the dendritic spine morphology affects two processes: (1) compartmentalization of the surface receptors in a single spine to retain local chemistry and (2) the delivery of receptors to the post-synaptic density (PSD) of spines via lateral diffusion following insertion onto the dendrite shaft. Computing the mean first passage time (MFPT) of surface receptors on a sample of real spine morphologies revealed that a constricted neck and bulbous head serve to compartmentalize receptors, consistent with previous works. The residence time of a Brownian diffusing receptor on the membrane of a single spine was computed to be ∼ 5 s. We found that the location of the PSD corresponds to the location at which the maximum MFPT occurs, the position that maximizes the residence time of a diffusing receptor. Meanwhile, the same geometric features of the spine that compartmentalize receptors inhibit the recruitment of AMPARs via lateral diffusion from dendrite insertion sites. Spines with narrow necks will trap a smaller fraction of diffusing receptors in the their PSD when considering competition for receptors between the spines, suggesting that ideal geometrical features involve a tradeoff depending on the intent of compartmentalizing the current receptor pool or recruiting new AMPARs in the PSD. The ultimate distribution of receptors among the spine PSDs by lateral diffusion from the dendrite shaft is an interplay between the insertion location and the shape and locations of both the spines and their PSDs. The time-scale for delivery of receptors to the PSD of spines via lateral diffusion was computed to be ∼ 60 s.


AMPA receptors Surface receptors Mean first passage time Surface diffusion 



  1. Andrsfalvy, B.K., Smith, M.A., Borchardt, T., Sprengel, R., Magee, J. C. (2003). Impaired regulation of synaptic strength in hippocampal neurons from glur1-deficient mice. The Journal of Physiology, 552(1), 35–45.CrossRefGoogle Scholar
  2. Ashby, M., Maier, S., Nishimune, A., Henley, J. (2006). Lateral diffusion drives constitutive exchange of ampa receptors at dendritic spines and is regulated by spine morphology. Journal of Neuroscience, 26(26), 7046–7055.PubMedCrossRefGoogle Scholar
  3. Biess, A., Korkotian, E., Holcman, D. (2007). Diffusion in a dendritic spine: The role of geometry. Physical Review E, 021922, 76.Google Scholar
  4. Borgdorff, A., & Choquet, D. (2002). Regulation of ampa receptor lateral movements. Nature, 417, 649–653.PubMedCrossRefGoogle Scholar
  5. Bressloff, P.C., & Earnshaw, B.A. (2007). Diffusion-trapping model of receptor trafficking in dendrites. Physical Review E, 75(041915).Google Scholar
  6. Calhoun, D., & Helzel, C. (2009). A finite volume method for solving parabolic equations on logically cartesian curved surface meshes. SIAM Journal on Scientific Computing, 31(6).Google Scholar
  7. Cautres, R., Herbin, R., Hubert, F. (2004). The lions domain decomposition algorithm on non matching cell-centered nite volume meshes. IMA Journal of Numerical Analysis, 24(3), 465–490.CrossRefGoogle Scholar
  8. Choquet, D. (2010). Fast ampar trafficking for a high-frequency synaptic transmission. European Journal of Neuroscience, 32, 250–260.PubMedCrossRefGoogle Scholar
  9. Choquet, D., & Triller, A. (2003). The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Reviews Neuroscience, 4, 251–265.PubMedCrossRefGoogle Scholar
  10. Dyhkin, E.B. (1965). Markov Processes I,II, Springer Verlag.Google Scholar
  11. Ehlers, M.D., Heine, M., Groc, L., Lee, M.-C., Choquet, D. (2007). Diffusional trapping of glur1 ampa receptors by input-specific synaptic activity. Neuron, 54(3), 447–460.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Fischer, M., Kaech, S., Knutti, D., Matus, A. (1998). Rapid actin-based plasticity in dendritic spines. Neuron, 20(5), 847–854.PubMedCrossRefGoogle Scholar
  13. Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309–1331.CrossRefGoogle Scholar
  14. Giannone, G., Hosy, E., Levet, F., Constals, A., Schulze, K., Sobolevsky, A., Rosconi, M., Gouaux, E., Tamp, R., Choquet, D., Cogne, L. (2010). Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophysical Journal, 99(4), 1303–1310.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Guyer, J.E., Wheeler, D., Fipy, Warren, J.A. (2009). Partial differential equations with python. Computing in Science and Engineering, 11(3), 6–15.CrossRefGoogle Scholar
  16. Harris, K.M.(P.I.). (2012). Synapse web. See K21 and K18.
  17. Harris, K.M., & Stevens, J.K. (1989). Dendritic spines of ca1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. Journal of Neuroscience, 9, 2982–2997.PubMedGoogle Scholar
  18. Heine, M., Groc, L., Frischknecht, R., Bque, J.C., Lounis, B., Rumbaugh, G., Huganir, R., Cognet, L., Choquet, D. (2008). Surface mobility of postsynaptic ampars tunes synaptic transmission. Science, 320(5873), 201–205.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Holcman, D., & Schuss, Z. (2004). Escape through a small opening: Receptor trafficking in a synaptic membrane. Journal of Statistical Physics, 117(5/6), 975–1014.CrossRefGoogle Scholar
  20. Holcman, D., & Schuss, Z. (2011). Diffusion laws in dendritic spines. Journal of Mathematical Neuroscience, 1(10).Google Scholar
  21. Holcman, D., Korkotian, E., Segal, M. (2005). Calcium dynamics in dendritic spines, modeling and experiments. Cell Calcium, 37(5), 467–475. Calcium in the function of the nervous system: New implications.PubMedCrossRefGoogle Scholar
  22. Holcman, D., Singer, A., Schuss, Z. (2006). Narrow escape, part ii: The circular disk. Journal of Statistical Physics, 122(3), 465–489.CrossRefGoogle Scholar
  23. Holmes, W. R. (1990). Is the function of dendritic spines to concentrate calcium? Brain Research, 519(1-2), 338–342.PubMedCrossRefGoogle Scholar
  24. Hugel, S., Abegg, M., de Paola, V., Caroni, P., Gahwiler, B., McKinney, R. (2009). Dendritic spine morphology determines membrane-associated protein exchange between dendritic shafts and spine heads. Cerebral Cortex, 19(3), 697–702.PubMedCrossRefGoogle Scholar
  25. Jaskolski, F., & Henley, J.M. (2009). Synaptic receptor trafficking: The lateral point of view. Neuroscience, 158, 19–24.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kieri, E. (2011). Accuracy aspects of the reaction-diffusion master equation on unstructured meshes. Uppsala Universitet.Google Scholar
  27. Lynch, G., & Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis. Science, 224, 1057–1063.PubMedCrossRefGoogle Scholar
  28. Makino, H., & Malinow, R. (2009). Ampa receptor incorporation into synapses during ltp: the role of lateral movement and exocytosis. Neuron, 64, 381-390.Google Scholar
  29. Masugi-Tokita, M., Tarusawa, E., Watanabe, M., Molnár, E., Fujimoto, K., Shigemoto, R. (2007). Number and density of ampa receptors in individual synapses in the rat cerebellum as revealed by sds-digested freeze-fracture replica labeling. The Journal of Neuroscience, 27(8), 2135–2144.PubMedCrossRefGoogle Scholar
  30. Newpher, T.M., & Ehlers, M.D. (2008). Glutamate receptor dynamics in dendritic microdomains. Neuron, 58(4), 472–497.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Nicholson, D., Trana, R., Katz, Y., Kath, W., Spruston, N., Geinisman, Y. (2006). Distance-dependent differences in synapse number and ampa receptor expression in hippocampal ca1 pyramidal neurons. Neuron, 50, 431–442.PubMedCrossRefGoogle Scholar
  32. Noguchi, J., Matsuzaki, M., Ellis-Davies, G.C.R., Kasai, H. (2005). Spine-neck geometry determines nmda receptor-dependent ca2+ signaling in dendrites. Neuron, 4, 609–622.CrossRefGoogle Scholar
  33. OBrien, R.J., Kamboj, S., Ehlers, M.D., Rosen, K.R., Fischbach, G.D., Huganir, R.L. (1998). Activity-dependent modulation of synaptic ampa receptor accumulation. Neuron, 21(5), 1067–1078.CrossRefGoogle Scholar
  34. Opazo, P., Labrecque, S., Tigaret, C., Frouin, A., Wiseman, P., De Koninck, P., Choquetl, D. (2010). Camkii triggers the diffusional trapping of surface ampars through phosphorylation of stargazin. Neuron, 67(2), 239–252.PubMedCrossRefGoogle Scholar
  35. Pike, L.J. (2003). Lipid rafts bringing order to chaos. Journal of Lipid Research, 44(4), 655–667.PubMedCrossRefGoogle Scholar
  36. Renner, M., Choquet, D.l., Triller, A. (2009). Control of the postsynaptic membrane viscosity. The Journal of Neuroscience, 29(9), 2926–2937.PubMedCrossRefGoogle Scholar
  37. Sabatini, B.L., Maravall, M., Svoboda, K. (2001). Ca(2+) signaling in dendritic spines. Current Opinion Neurobiology, 11(3), 349–56.CrossRefGoogle Scholar
  38. Santamaria, F., Wils, S., De Schutter, E., Augustine, G. J. (2006). Anomalous diffusion in purkinje cell dendrites caused by spines. Neuron, 52(4), 635–648.PubMedCentralPubMedCrossRefGoogle Scholar
  39. Schuss, Z. (1980). Theory and applications of stochastic differential equations. Wiley.Google Scholar
  40. Schuss, Z. (2010). Theory and applications of stochastic processes: an analytical approach. Springer.Google Scholar
  41. Schuss, Z., Singer, A., Holcman, D. (2007). The narrow escape problem for diffusion in cellular microdomains. PNAS, 104(41), 16098–16103.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sheng, M., & Jong Kim, M. (2002). Postsynaptic signaling and plasticity mechanisms. Science, 298(25), 776–780.PubMedCrossRefGoogle Scholar
  43. Sheng, M., & Lee, S.H. (2001). Ampa receptor trafficking and the control of synaptic transmission. Cell, 105(7), 825–828.PubMedCrossRefGoogle Scholar
  44. Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology, 1(1), 31–39.PubMedCrossRefGoogle Scholar
  45. Singer, S.J., & Nicolson, G. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175(4023), 720–731.PubMedCrossRefGoogle Scholar
  46. Svoboda, K., Tank, D.W., Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272(5262), 716–719.PubMedCrossRefGoogle Scholar
  47. Tardin, C., Cognet, L., Bats, C., Lounis, B., Choquet, D. (2003). Direct imaging of lateral movements of ampa receptors inside synapses. The EMBO Journal, 22(18), 4656–4665.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Triller, A., & Choquet, D. (2008). New concepts in synaptic biology derived from single-molecule imaging. Neuron, 59(3), 359–374.PubMedCrossRefGoogle Scholar
  49. Yudowski, G.A., Puthenveedu, M.A., Leonoudakis, D., Panicker, S., Thorn, K.S., Beattie, E.C., von Zastrow, M. (2007). Real-time imaging of discrete exocytic events mediating surface delivery of ampa receptors. The Journal of Neuroscience, 27(41), 11112–11121.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cory M. Simon
    • 1
  • Iain Hepburn
    • 2
    • 3
  • Weiliang Chen
    • 3
  • Erik De Schutter
    • 2
    • 3
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Theoretical NeurobiologyUniversity of AntwerpAntwerpBelgium
  3. 3.Computational Neuroscience UnitOkinawa Institute of Science and TechnologyOnna-sonJapan

Personalised recommendations