Advertisement

Journal of Computational Neuroscience

, Volume 36, Issue 1, pp 39–53 | Cite as

Proposing a two-level stochastic model for epileptic seizure genesis

  • F. Shayegh
  • S. Sadri
  • R. Amirfattahi
  • K. Ansari-Asl
Article

Abstract

By assuming the brain as a multi-stable system, different scenarios have been introduced for transition from normal to epileptic state. But, the path through which this transition occurs is under debate. In this paper a stochastic model for seizure genesis is presented that is consistent with all scenarios: a two-level spontaneous seizure generation model is proposed in which, in its first level the behavior of physiological parameters is modeled with a stochastic process. The focus is on some physiological parameters that are essential in simulating different activities of ElectroEncephaloGram (EEG), i.e., excitatory and inhibitory synaptic gains of neuronal populations. There are many depth-EEG models in which excitatory and inhibitory synaptic gains are the adjustable parameters. Using one of these models at the second level, our proposed seizure generator is complete. The suggested stochastic model of first level is a hidden Markov process whose transition matrices are obtained through analyzing the real parameter sequences of a seizure onset area. These real parameter sequences are estimated from real depth-EEG signals via applying a parameter identification algorithm. In this paper both short-term and long-term validations of the proposed model are done. The long-term synthetic depth-EEG signals simulated by this model can be taken as a suitable tool for comparing different seizure prediction algorithms.

Keywords

EEG generator Normal-to-seizure state transition Seizure Dynamical model Excitatory and inhibitory synaptic gains Hidden Markov Model 

Notes

Acknowledgement

The work of K. Ansari-Asl has been supported in part by Center for International Scientific Studies & Collaboration (CISSC) and French Embassy in Tehran.

References

  1. Albert, P. S. (1991). A two-state Markov mixture model for a time series of epileptic seizure counts. Biometrics, 47, 1371–1381.PubMedCrossRefGoogle Scholar
  2. Ching W.-K., & Ng, M. K. (2006). Markov Chains: Models, Algorithms and Applications, Springer Science & Business Media, Inc.Google Scholar
  3. da Silva, F. H. L., Hoeks, A., Smits, H., & Zetterberg, L. H. (1974). Model of brain rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik, 15(1), 27–37.CrossRefGoogle Scholar
  4. da Silva, F. H. L., Blanes, W., Katizlan, S. N., Parra, J., Suffczynski, P., & Velis, D. N. (2003a). Dynamical diseases of brain systems: different routes to epileptic seizure. IEEE Trans. on Biomedical Enginnering, 50(5), 540–548.CrossRefGoogle Scholar
  5. da Silva, F. H. L., Blanes, W., Katizlan, S. N., Parra, J., Suffczynski, P., & Velis, D. N. (2003b). Epilepsies as dynamical diseases of brain systems: basic models of transition between normal and epileptic activity. Epilepsia, 44(12), 72–83.CrossRefGoogle Scholar
  6. David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20, 1743–1755.PubMedCrossRefGoogle Scholar
  7. David, S., Ferrer, M.A., Travieso, C.M., Alonso J.B. (2004). gpdsHMM: A Hidden Markov Model Toolbox in the Matlab Environment, CSIMTA, Complex Systems Intelligence and Modern Technological Applications, pp. 476–479.Google Scholar
  8. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39, 1–38.Google Scholar
  9. Franks, K. M., Bartol, T. M., & Sejnowski, T. J. (2002). A Monte Carlo model reveals independent signaling at central glutamatergic synapses. Biophysical Journal, 83, 2333–2348.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Freeman, W. J. (1975). Mass action in the nervous system. New York NY: Academic.Google Scholar
  11. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. New York: Springer. 2001.CrossRefGoogle Scholar
  12. Hopkins, A., Davies, P., & Dobson, C. (1985). Mathematical models of patterns of seizures; their use in the evaluation of drugs. Archives of Neurology, 42, 463–467.PubMedCrossRefGoogle Scholar
  13. Kimmel, D. L., & Moore, T. (2007). Temporal patterning of saccadic eye movement signals. The Journal of Neuroscience, 27(29), 7619–7630.PubMedCrossRefGoogle Scholar
  14. Kolb, B. (1995). Plasticity and Behavior, Lawrence Erlbaum Associates Inc.Google Scholar
  15. Labyt, E., Uva, L., de Curtis, M., & Wendling, F. (2006). Realistic modeling of entorhinal cortex field potentials and interpretation of epileptic activity in the guinea-pig isolated brain preparation. Journal of Neurophysiology, 96(1), 363–377.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Labyt, E., Frogerais, P., Uva, L., Bellanger, J. J., & Wendling, F. (2007). Modeling of entorhinal cortex and simulation of epileptic activity: insights into the role of inhibition related parameters. IEEE Transactions on Information Technology in Biomedicine, 11(4), 450–461.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Lytton, W. W. (2008). Computer modelling of epilepsy. Nature Reviews Neuroscience, 9, 626–637.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., & Tononi, G. (2005). Breakdown of cortical effective connectivity during sleep. Science, 309(5744), 2228–2232.PubMedCrossRefGoogle Scholar
  19. Milton, J. G., Gotman, J., & Remillard, G. M. (1987). Timing of seizure recurrence in adult epileptic patients: a statistical analysis. Epilepsia, 28(5), 471–478.PubMedCrossRefGoogle Scholar
  20. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition”, proc. IEEE, 77(2), 257–286.CrossRefGoogle Scholar
  21. Ruppert, D., Wand, M. P. & Carroll, R. J. (2003). Semi-parametric Regression Cambridge University Press, p. 295.Google Scholar
  22. Schelter, B., Winterhalder, M., Maiwald, T., Brandt, A., Schad, A., Schulze-Bonhage, A., et al. (2006). Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. Chaos, 16, 013108.PubMedCrossRefGoogle Scholar
  23. Selesnick, I. W., Baraniuk, R. G, & Kingsbury, N. G. (2005). The Dual-Tree Complex Wavelet Transform, IEEE Signal Processing Magazine, pp. 123–151.Google Scholar
  24. Shayegh, F., Sadri, S., AmirFattahi, R. (2009). A theoretical model for spontaneous seizure generation based on Markov chain process, 4th International IEEE/EMBS Conference on Neural Engineering, pp. 637–640.Google Scholar
  25. Shayegh, F., Amirfattahi, R., Sadri, S., Ansari-Asl, K., & Saraaee, M. H. (2011). Defining a New Measure for Synchronization of Multi-Channel Epileptic Depth-EEG Signals based on Identification of Parameters of a Computational Model, Proceedings of the IASTED International Conference July 11–13, Cambridge, United Kingdom, pp. 344–350.Google Scholar
  26. Soltesz, I., Staley, K. (2008). Computational Neuroscience in Epilepsy, chapter 25, Academic Press.Google Scholar
  27. Steriade, M. (2003). Neuronal substrates of sleep and epilepsy, Cambridge University Press.Google Scholar
  28. Suffczynski, P., da Silva, F. H. L., Parra, J., Velis, D. N., Bouwman, B. M., van Rijn, C. M., et al. (2006). Dynamics of epileptic phenomena determined from statistics of ictal transitions,". IEEE Transactions on Biomedical Engineering, 53(3), 524–532.PubMedCrossRefGoogle Scholar
  29. Sunderam, S., Osorio, I., Frei, A., & Watkins, J. F. (2001). Stochastic modeling and prediction of experimental seizures in sprague–dawley rats. Journal of Clinical Neurophysiology, 18, 275–282.PubMedCrossRefGoogle Scholar
  30. Sunderam, S., Osoriob, I., & Freib, M. G. (2007). Epileptic seizures are temporally interdependent under certain conditions epilepsy research. Vol., 76, 77–84.Google Scholar
  31. Taubøll, E., Lundervold, A., & Gjerstada, L. (1991). Temporal distribution of seizures in epilepsy epilepsy research. Vol., 8, 153–165.Google Scholar
  32. Ullah, M., & Wolkenhauer, O. (2007). Family tree of Markov models in systems biology. IET Systems Biology, 1, 247–254.PubMedCrossRefGoogle Scholar
  33. Wendling, F., Bellanger, J. J., Bartolomei, F., & Chauvel, P. (2000). Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biological Cybernetics, 83, 367–378.PubMedCrossRefGoogle Scholar
  34. Wendling, F., Bartolomei, F., Bellanger, J. J., & Chauvel, P. (2002). Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience, 15, 1499–1508.PubMedCrossRefGoogle Scholar
  35. Wendling, F., Hernandez, A., Bellanger, J. J., Chauvel, P., & Bartolomei, F. (2005). Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. Journal of Clinical Neurophysiology, 22, 343–356.PubMedCentralPubMedGoogle Scholar
  36. Wong, S., Gardner, A. B., Krieger, A. M., & Litt, B. (2007). A stochastic framework for evaluating seizure prediction algorithms using hidden Markov models. Journal of Neurophysiology, 97, 2525–2532.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • F. Shayegh
    • 1
  • S. Sadri
    • 1
  • R. Amirfattahi
    • 1
  • K. Ansari-Asl
    • 2
  1. 1.Digital Signal Processing Research Lab, Department of Electrical and Computer EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Electrical Department, Engineering FacultyShahid Chamran University of AhvazAhvazIran

Personalised recommendations