Advertisement

Journal of Computational Neuroscience

, Volume 35, Issue 3, pp 317–334 | Cite as

Reliability of spike and burst firing in thalamocortical relay cells

  • Fleur Zeldenrust
  • Pascal J. P. Chameau
  • Wytse J. Wadman
Article

Abstract

The reliability and precision of the timing of spikes in a spike train is an important aspect of neuronal coding. We investigated reliability in thalamocortical relay (TCR) cells in the acute slice and also in a Morris-Lecar model with several extensions. A frozen Gaussian noise current, superimposed on a DC current, was injected into the TCR cell soma. The neuron responded with spike trains that showed trial-to-trial variability, due to amongst others slow changes in its internal state and the experimental setup. The DC current allowed to bring the neuron in different states, characterized by a well defined membrane voltage (between −80 and −50 mV) and by a specific firing regime that on depolarization gradually shifted from a predominantly bursting regime to a tonic spiking regime. The filtered frozen white noise generated a spike pattern output with a broad spike interval distribution. The coincidence factor and the Hunter and Milton measure were used as reliability measures of the output spike train. In the experimental TCR cell as well as the Morris-Lecar model cell the reliability depends on the shape (steepness) of the current input versus spike frequency output curve. The model also allowed to study the contribution of three relevant ionic membrane currents to reliability: a T-type calcium current, a cation selective h-current and a calcium dependent potassium current in order to allow bursting, investigate the consequences of a more complex current-frequency relation and produce realistic firing rates. The reliability of the output of the TCR cell increases with depolarization. In hyperpolarized states bursts are more reliable than single spikes. The analytically derived relations were capable to predict several of the experimentally recorded spike features.

Keywords

Reliability Precision Morris-Lecar model Thalamocortical relay cell Coincidence factor Hunter and Milton measure Frozen noise 

Notes

Acknowledgments

We are very grateful to the extensive and constructive comments of one of our anonymous reviewers.

Supplementary material

10827_2013_454_MOESM1_ESM.pdf (1.5 mb)
(PDF 1.45 MB)

References

  1. Badel, L., Lefort, S., Brette, R., Petersen, C.C.H., Gerstner, W., Richardson, M.J.E. (2008). Journal of Neurophysiology, 99, 656.PubMedCrossRefGoogle Scholar
  2. Bernander, O., Douglas, R., Martin, K.A.C., Koch, C. (1991). Proceedings of the National Academy of Sciences of the United States of America, 88, 11569.Google Scholar
  3. Bryant, H.L., & Segundo, J.P. (1976). Spike initiation by transmembrane current: a white-noise analysis. The Journal of Physiology, 260, 279–314.PubMedGoogle Scholar
  4. Cafaro, J., & Rieke, F. (2010). Nature, 468, 964.Google Scholar
  5. Chacron, M.J., Longtin, A., Maler, L. (2004). Journal of Computational Neuroscience, 17(2), 127.PubMedCrossRefGoogle Scholar
  6. de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle, R., Bialek, W. (1997). Science, 275, 1805.PubMedCrossRefGoogle Scholar
  7. Destexhe, A., Babloyantz, A., Sejnowski, T.J. (1993). Biophysical Journal, 65, 1538.PubMedCrossRefGoogle Scholar
  8. Dyhrfjeld-Johnsen, J., Morgan, R.J., Földy, C., Soltesz, I. (2008). Frontiers in Cellular Neuroscience, 2(2).Google Scholar
  9. Fellous, J.M., Tiesinga, P.H.E., Thomas, P.J., Sejnowski, T.J. (2004). The Journal of Neuroscience, 24(12), 2989.PubMedCrossRefGoogle Scholar
  10. George, M.S., Abbott, L.F., Siegelbaum, S.A. (2009). Nature Neuroscience, 12(5), 577.PubMedCrossRefGoogle Scholar
  11. Goldberg, J.M., Smith, C.E., Fernandez, C. (1984). Journal of Neurophysiology, 51(6), 1236.PubMedGoogle Scholar
  12. Golding, N.L., Kath, W.L., Spruston, N. (2001). Journal of Neurophysiology, 86, 2998.PubMedGoogle Scholar
  13. Gutkin, B.S., & Ermentrout, B. (1998). Neural Computation, 10, 1047.PubMedCrossRefGoogle Scholar
  14. Gutkin, B.S., Ermentrout, B., Rudolph, M. (2003). Journal of Computational Neuroscience, 15, 91.PubMedCrossRefGoogle Scholar
  15. Hodgkin, A.L. (1948). The Journal of Physiology, 107, 165.PubMedGoogle Scholar
  16. Huguenard, J.R., & McCormick, D.A. (1992). Journal of Neurophysiology, 68(4), 1373.PubMedGoogle Scholar
  17. Hunter, J.D., & Milton, J.G. (2003). Journal of Neurophysiology, 90, 387.PubMedCrossRefGoogle Scholar
  18. Hunter, J.D., Milton, J., Thomas, P. (1998). Journal of Neurophysiology, 80, 1427.PubMedGoogle Scholar
  19. Izhikevich, E.M. (2005). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge: MIT Press.Google Scholar
  20. Jahnsen, H., & Llinás, R. (1984). The Journal of Physiology, 349, 227.PubMedGoogle Scholar
  21. Johansson, R.S., & Birznieks, I. (2004). Nature Neuroscience, 7(2), 170.PubMedCrossRefGoogle Scholar
  22. Jolivet, R., Rauch, A., Lüscher, H.R., Gerstner, W. (2006). Journal of Computational Neuroscience, 21, 35.PubMedCrossRefGoogle Scholar
  23. Kepecs, A., & Lisman, J. (2003). Network: Computation in Neural Systems, 14(1), 103.Google Scholar
  24. Kistler, W.M., Gerstner, W., van Hemmen, J.L. (1997). Neural Computation, 9, 1015.CrossRefGoogle Scholar
  25. Kreuz, T., Haas, J.S., Morelli, A., Abarbanel, H.D.I., Politi, A. (2007). Journal of Neuroscience Methods, 165, 151.PubMedCrossRefGoogle Scholar
  26. Kreuz, T., Chicharro, D., Greschner, M., Andrzejak, R.G. (2011). Journal of Neuroscience Methods, 195, 92.PubMedCrossRefGoogle Scholar
  27. Kruskal, P., Stanis, J., McNaughton, B. (2007). Statistics in Medicine, 26, 3997.PubMedCrossRefGoogle Scholar
  28. Kuznetsova, M.S., Higgs, M.H., Spain, W.J. (2008). The Journal of Neuroscience, 28(46), 11906.PubMedCrossRefGoogle Scholar
  29. Lesica, N., & Stanley, G.B. (2004). The Journal of Neuroscience, 24(47), 10731.PubMedCrossRefGoogle Scholar
  30. Lyttle, D., & Fellous, J.M. (2011). Journal of Neuroscience Methods, 199(2), 296.PubMedCrossRefGoogle Scholar
  31. Maccaferri, G., Mangoni, M., Lazzari, A., DiFrancesco, D. (1993). Journal of Neurophysiology, 69(6), 2129.PubMedGoogle Scholar
  32. Magee, J.C. (1998). The Journal of Neuroscience, 18(19), 7613.PubMedGoogle Scholar
  33. Mainen, Z.F., & Sejnowski, T.J. (1995). Science, 268.Google Scholar
  34. Mainen, Z.F., & Sejnowski, T.J. (1996). Nature, 382, 363.PubMedCrossRefGoogle Scholar
  35. McCormick, D.A., & Huguenard, J.R. (1992). Journal of Neurophysiology, 68(4), 1384.PubMedGoogle Scholar
  36. Migliore, M., Messineo, L., Ferrante, M. (2004). Journal of Computational Neuroscience, 16(1), 5.PubMedCrossRefGoogle Scholar
  37. Morris, G., & Lecar, H. (1981). Biophysical Journal, 35(1), 193.PubMedCrossRefGoogle Scholar
  38. Naud, R., Gerhard, F., Gerstner, W. (2011). Neural Computation, 23(12).Google Scholar
  39. Oswald, A.M., Chacron, M.J., Doiron, B., Bastian, J., Maler, L. (2004). The Journal of Neuroscience, 24(18), 4351.PubMedCrossRefGoogle Scholar
  40. Paiva, A.R., Park, I., Principe, J.C. (2010). Neural Computing & Applications, 19, 405.CrossRefGoogle Scholar
  41. Poirazi, P., Brannon, T., Mel, B.W. (2003). Neuron, 37, 977.PubMedCrossRefGoogle Scholar
  42. Poolos, N.P., Migliore, M., Johnston, D. (2002). Nature Neuroscience, 5(8), 767.PubMedGoogle Scholar
  43. Prescott, S.A., Ratté, S., De Koninck, Y., Sejnowski, T.J. (2006). The Journal of Neuroscience, 26(36), 9084.PubMedCrossRefGoogle Scholar
  44. Prescott, S.A., De Koninck, Y., Sejnowski, T.J. (2008a). PLoS Computational Biology, 4(10), e1000198.CrossRefGoogle Scholar
  45. Prescott, S.A., Ratté, S., De Koninck, Y., Sejnowski, T.J. (2008b). Journal of Neurophysiology, 100, 3030.CrossRefGoogle Scholar
  46. Reinagel, P., & Reid, R.C. (2000). The Journal of Neuroscience, 20(14), 5392.PubMedGoogle Scholar
  47. Reinagel, P., Godwin, D., Sherman, S.M., Koch, C. (1999). Journal of Neurophysiology, 81(5), 2558.PubMedGoogle Scholar
  48. Rinzel, J., & Ermentrout, B. (1998). In C. Koch, & I. Segev, (Eds.), Methods in Neural Modelling: from synapses to networks, (pp. 251–292). Cambridge: MIT Press.Google Scholar
  49. Rubin, J.E., & Terman, D. (2004). Journal of Computational Neuroscience, 16, 211.PubMedCrossRefGoogle Scholar
  50. Rudolph, M., & Destexhe, A. (2003). Journal of Computational Neuroscience, 14, 239.PubMedCrossRefGoogle Scholar
  51. Schneider, A.D., Cullen, K.E., Chacron, M.J. (2011). PLoS Computational Biology, 7(7), e1002120.PubMedCrossRefGoogle Scholar
  52. Schreiber, S., Fellous, J.M., Whitmer, D., Tiesinga, P.H.E., Sejnowski, T.J. (2003). Neurocomputing, 52–54, 925.PubMedCrossRefGoogle Scholar
  53. Schreiber, S., Fellous, J.M., Tiesinga, P.H.E., Sejnowski, T.J. (2004). Journal of Neurophysiology, 91, 194.PubMedCrossRefGoogle Scholar
  54. Schreiber, S., Samengo, I., Herz, A.V.M. (2009). Journal of neurophysiology, 101(5), 2239.PubMedCrossRefGoogle Scholar
  55. Sherman, S.M. (2001). Trends in Neurosciences, 24(2), 122.PubMedCrossRefGoogle Scholar
  56. Stein, R.B. (1967). Biophysical journal, 7(1), 37.PubMedCrossRefGoogle Scholar
  57. Stein, R.B., Gossen, E.R., Jones, K.E. (2005). Nature Reviews Neuroscience, 6(5), 389.PubMedCrossRefGoogle Scholar
  58. Steriade, M., & Llinás, R. (1988). Physiological Reviews, 68, 649.PubMedGoogle Scholar
  59. Thomas, P.J., Tiesinga, P.H.E., Fellous, J.M., Sejnowski, T.J. (2003). Neurocomputing, 52–54, 955.PubMedCrossRefGoogle Scholar
  60. Tiesinga, P.H.E., Fellous, J.M., Sejnowski, T.J. (2008). Nature Neuroscience, 9, 97.Google Scholar
  61. Tort, A.B., Rotstein, H.G., Dugladze, T., Gloveli, T., Kopell, N.J. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13490.Google Scholar
  62. Toups, J.V., Fellous, J.-M., Thomas, P.J., Sejnowski, T.J., Tiesinga, P.H. (2012). Multiple spike time patterns occur at bifurcation points of membrane potential dynamics. PLoS Comput Biol, 8(10), e1002615.PubMedCrossRefGoogle Scholar
  63. van Rossum, M.C.W. (2001). Neural Computation, 13, 751.PubMedCrossRefGoogle Scholar
  64. van Welie, I., van Hooft, J.A., Wadman, W.J. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101(14), 5123.PubMedCrossRefGoogle Scholar
  65. Victor, J.D., & Purpura, K.P. (1996). Journal of Neurophysiology, 76(2), 1310.PubMedGoogle Scholar
  66. Victor, J.D., & Purpura, K.P. (1997). Network: Computation in Neural Systems, 8, 127.CrossRefGoogle Scholar
  67. Wan, F.Y.M., & Tuckwell, H.C. (1982). Journal of Theoretical Neurobiology, 1, 197.Google Scholar
  68. Zeldenrust, F. (2012). Neural coding with spikes and bursts: characterizing neurons and networks with noisy input. Ph.D. thesis, University of Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fleur Zeldenrust
    • 1
  • Pascal J. P. Chameau
    • 1
  • Wytse J. Wadman
    • 1
  1. 1.Swammerdam Institute for Life Sciences, Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations