Journal of Computational Neuroscience

, Volume 35, Issue 2, pp 125–154 | Cite as

Striola magica. A functional explanation of otolith geometry

  • Mariella Dimiccoli
  • Benoît Girard
  • Alain Berthoz
  • Daniel Bennequin


Otolith end organs of vertebrates sense linear accelerations of the head and gravitation. The hair cells on their epithelia are responsible for transduction. In mammals, the striola, parallel to the line where hair cells reverse their polarization, is a narrow region centered on a curve with curvature and torsion. It has been shown that the striolar region is functionally different from the rest, being involved in a phasic vestibular pathway. We propose a mathematical and computational model that explains the necessity of this amazing geometry for the striola to be able to carry out its function. Our hypothesis, related to the biophysics of the hair cells and to the physiology of their afferent neurons, is that striolar afferents collect information from several type I hair cells to detect the jerk in a large domain of acceleration directions. This predicts a mean number of two calyces for afferent neurons, as measured in rodents. The domain of acceleration directions sensed by our striolar model is compatible with the experimental results obtained on monkeys considering all afferents. Therefore, the main result of our study is that phasic and tonic vestibular afferents cover the same geometrical fields, but at different dynamical and frequency domains.


Otolith organs Striola Vestibular pathway 



This work was supported in part by the European Projects CLONS (FP7-ITC-2007.8.0. Project 225929). We are very grateful to Dr. Rudi Jaeger and Professor Emeritus Gerald Jay Goldberg to give us the permission of using their data and reproducing their images. D.B. thanks Ruth-Anne Eatock for very interesting discussions. The authors thank warmly the two anonymous referees which helped them to improve their work and its presentation.


  1. Berthoz, A., Allain, R., Bennequin, D., David, R., Janvier, P. (2011). Sortir de l’eau. Le passage de la vie aquatique la vie terrestre., chap. Sortir de l’eau et systeme vestibulaire. P. Corvol et J.-L. Elghozi (dir.), Odile Jacob.Google Scholar
  2. Boyle, R., Goldberg, J.M., Highstein, S.M. (1992). Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways. Journal of Neurophysiology, 68(2), 471–484. Scholar
  3. Brichta, A.M., & Goldberg, J.M. (1998). The Papilla Neglecta of Turtles: A Detector of Head Rotations with Unique Sensory Coding Properties. Journal of Neuroscience, 18(11), 4314–4324. Scholar
  4. Bronstein, A.M., & Gresty, M.A. (1988). Short latency compensatory eye movement responses to transient linear head acceleration: a specific function of the otolith-ocular reflex. Experimental Brain Research, 71(2), 406–410.CrossRefGoogle Scholar
  5. Chang, J., Popper, A., Saidel, W. (1992). Heterogeneity of sensory hair cells in a fish ear. Journal of Comparative Neurology, 4(324), 621–640.CrossRefGoogle Scholar
  6. Coxeter, H. (1969). Introduction to Geometry. New York: Wiley.Google Scholar
  7. Curthoys, I.S., Betts, G.A., Burgess, A.M., MacDougall, H.G., Cartwright, A.D., Halmagyi, G.M. (1999). The planes of the utricular and saccular maculae of the guinea pig. Annals of the New York Academy of Sciences, 871(1), 27–34. doi: 10.1111/j.1749-6632.1999.tb09173.x.PubMedCrossRefGoogle Scholar
  8. Curthoys, I.S., Black, R.A., Goldberg, J.M., Fernandez, C. (1995). New representations of otolithic primary afferent spatial tuning–a re-processing of the Fernandez & Goldberg (1976) data. Acta oto-laryngologica Supplement, 520 Pt 2, 427–429. Scholar
  9. Darboux, G. (1887). Leçons sur la Theorie generale des Surfaces et les applications geometriques du Calcul Infinitesimal (Vol. 1). Gauthier-Villars.Google Scholar
  10. Deliagina, T.G., Beloozerova, I.N., Zelenin, P.V., Orlovsky, G.N. (2008). Spinal and supraspinal postural networks. Brain Research Reviews, 57(1), 212–221. doi: 10.1016/j.brainresrev.2007.06.0172007.06.017.PubMedCrossRefGoogle Scholar
  11. Desai, S.S., Zeh, C., Lysakowski, A. (2005). Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. Journal of Neurophysiology, 93(1), 251–266. doi: 10.1152/jn.00746.2003.PubMedCrossRefGoogle Scholar
  12. Dickman, J., Angelaki, D., Correia, M. (1991). Response properties of gerbil otolith afferents to small-angle pitch and roll tilts. Brain Research, 556, 303–310.PubMedCrossRefGoogle Scholar
  13. Eatock, R., & Songer, J. (2011). Vestibular hair cells and afferents: two channels for head motion signals. Annual Review of Neuroscience, 34, 501–534.PubMedCrossRefGoogle Scholar
  14. Eugene, D., Idoux, E., Beraneck, M., Moore, L., Vidal, P.P. (2011). Intrinsic membrane properties of central vestibular neurons in rodents. Experimental Brain Research, 1–14. doi: 10.1007/s00221-011-2569-3.
  15. Fernandez, C., & Goldberg, J.M. (1976a). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. Journal of Neurophysiology, 39(5), 970–984. Scholar
  16. Fernandez, C., & Goldberg, J.M. (1976b). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. Journal of Neurophysiology, 39(5), 985–995. Scholar
  17. Fernandez, C., & Goldberg J.M. (1976c). Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. Journal of Neurophysiology, 39(5), 996–1008. Scholar
  18. Fernandez, C., Goldberg, J.M., Baird, R.A. (1990). The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. Journal of Neurophysiology, 63(4), 767–780. Scholar
  19. Georgopoulos, A., Schwartz, A., Kettner, R. (1986). Neuronal population coding of movement direction. Science, 233, 1416–1419.PubMedCrossRefGoogle Scholar
  20. Goldberg, J.M. (2000). Afferent diversity and the organization of central vestibular pathways. Experimental Brain Research, 130(3), 277–297. doi: 10.1007/s002210050033.CrossRefGoogle Scholar
  21. Goldberg, J.M., Desmadryl, G., Baird, R.A., Fernandez, C. (1990). The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. Journal of Neurophysiology, 63(4), 781–790. Scholar
  22. Greenhill, A. (1892). The applications of elliptic functions. New York: MacMillan and Co.Google Scholar
  23. Griffith, P., & Harris, J. (1978). Principles of algebraic geometry. New York: Wiley.Google Scholar
  24. Hess, B.J. (1992). Three-dimensional head angular velocity detection from otolith afferent signals. Biological Cybernetics, 67(4), 323–333. Scholar
  25. Highstein, S., Rabbitt, R., Holstein, G., Boyle, R. (2005). Determinants of spatial and temporal coding by semicircular canal afferents. Journal of Neurophysiology, 93(5), 2359–2370.PubMedCrossRefGoogle Scholar
  26. Jaeger, R. (2002). Modeling the relation between head orientations and otolith responses in humans. Hearing Research, 173(1–2), 29–42. doi: 10.1016/S0378-5955(02)00485-9.PubMedCrossRefGoogle Scholar
  27. Jaeger, R., & Haslwanter, T. (2004). Otolith responses to dynamical stimuli: results of a numerical investigation. Biological Cybernetics, 90(3), 165–175. doi: 10.1007/s00422-003-0456-0.PubMedCrossRefGoogle Scholar
  28. Jaeger, R., Kondrachuk, A.V., Haslwanter, T. (2008). The distribution of otolith polarization vectors in mammals: comparison between model predictions and single cell recordings. Hearing research, 239(1–2), 12–19. doi: 10.1016/j.heares.2008.01.004.PubMedCrossRefGoogle Scholar
  29. Jones, T., Jones, S., Colbert, S. (1998). The adequate stimulus for avian short latency vestibular responses to linear translation. Journal of Vestibular Research, 3(8), 253–72.CrossRefGoogle Scholar
  30. Lanford, P.J., Platt, C., Popper, A.N. (2000). Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear. Hearing Research, 143(1–2), 1–13. Scholar
  31. Lange, M., & Jones, T. (1990). Short latency electrophysiological responses to pulsed linear acceleration in the mammal. Association for Research in Otolaryngology, 343–390.Google Scholar
  32. Leonard, R. (2002). Molecular probes of the vestibular nerve I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Research, 928(1–2), 8–17. doi: 10.1016/S0006-8993(01)03268-1.PubMedCrossRefGoogle Scholar
  33. Li, A., Xue, J., Peterson, E. (2007). Architecture of the mouse utricle: macular organization and hair bundle heights. Journal of Neurophysiology, 99(2), 718–733.PubMedCrossRefGoogle Scholar
  34. Li, A., Xue, J., Peterson, E.H. (2008). Architecture of the mouse utricle: macular organization and hair bundle heights. Journal of Neurophysiology, 99(2), 718–733. doi: 10.1152/jn.00831.2007.PubMedCrossRefGoogle Scholar
  35. Lin, V., Golub, J., Nguyen, T., Hume, C., Oesterle, E., Stone, J. (2011). Inhibition of notch activity promotes nonmitotic regeneration of hair cells in the adult mouse utricles. The Journal of Neuroscience, 31(43), 15329–15339.PubMedCrossRefGoogle Scholar
  36. Lindeman, H. (1969). Studies on the morphology of the sensory regions of the vestibular apparatus. Erg Anat Entw Gesch, 42, 1–113.Google Scholar
  37. Lindeman, H.H. (1973). Anatomy of the otolith organs. Advances in Oto-rhino-laryngology, 20, 405–433. Scholar
  38. Lorincz, E.N., & Hess, B.J.M. (2008). Dynamic effects on the subjective visual vertical after roll rotation. Journal of Neurophysiology, 100(2), 657–669. doi: 10.1152/jn.01248.2007.PubMedCrossRefGoogle Scholar
  39. Lu, Z. (1998). Morphological polarizations of sensory hair cells in the three otolithic organs of a teleost fish: fluorescent imaging of ciliary bundles. Hearing Research, 126(1–2), 47–57. doi: 10.1016/S0378-5955(98)00149-X.PubMedCrossRefGoogle Scholar
  40. Lyford-Pike, S., Vogelheim, C., Chu, E., Santina, C.D., Carey, J. (2007). Gentamicin is primarily localized in vestibulat type I hair cells after intratympanic administration. Journal of the Association for Research in Otolaryngology (JARO), 8, 497–508.CrossRefGoogle Scholar
  41. Minor, L.B., & Goldberg, J.M. (1991). Vestibular-nerve inputs to the vestibulo-ocular reflex: a functional- ablation study in the squirrel monkey. The Journal of Neuroscience, 11(6), 1636–1648. Scholar
  42. Moravec, W., & Peterson, E. (2004). Differences between stereocilia numbers on type i and type ii vestibular hair cells. Journal of Neurophysiology, 92, 3153–3160.PubMedCrossRefGoogle Scholar
  43. Naganuma, H., Tokumasu, K., Okamoto, M., Hashimoto, S., Yamashina S. (2001). Three-dimensional analysis of morphological aspects of the human saccular macula. The Annals of Otology, Rhinology, and Laryngology, 110(11), 1017–1024. Scholar
  44. Naganuma, H., Tokumasu K., Okamoto, M., Hashimoto, S., Yamashina, S. (2003). Three-dimensional analysis of morphological aspects of the human utricular macula. The Annals of Otology, Rhinology, and Laryngology, 112(5), 419–424. Scholar
  45. Nam, J., Cotton, J., Grant, W. (2007a). A virtual hair cell, I: evaluation of mechanoelectric transduction parameters. Biophysical Journal, 92(6), 1918–1928.PubMedCrossRefGoogle Scholar
  46. Nam, J., Cotton, J., Grant, W. (2007b). A virtual hair cell, II: evaluation of mechanoelectric transduction parameters. Biophysical Journal, 92(6), 1929–1937.PubMedCrossRefGoogle Scholar
  47. Peterson, E. (1988). Are there parallel channels in the vestibular nerve? New Physiology Science, 13, 194–201.Google Scholar
  48. Platt, C., Jrgensen, J.M., Popper, A.N. (2004). The inner ear of the lungfish Protopterus. Journal of Comparative Neurology, 471(3), 277–288. doi: 10.1002/cne.20038.PubMedCrossRefGoogle Scholar
  49. Rabbitt, R. (1999). Directional coding of three-dimensional movements by the vestibular semicircular canals. Biological Cybernetics, 80(6), 417–431.PubMedCrossRefGoogle Scholar
  50. Ross, M. (1988). Morphological evidence for parallel processing of information in rat macula. Acta Otolaryngol, 106(3–4), 213–218.PubMedCrossRefGoogle Scholar
  51. Ross M. (1997). Morphological evidence for local microcircuits in rat vestibular maculae. Journal of Comparative Neurology, 379(3), 333–346. doi: 10.1002/(SICI)1096-9861(19970317)379:3%3C333::AID-CNE2%3E3.0.CO;2-4.PubMedCrossRefGoogle Scholar
  52. Ross, M. (2001). Complex vestibular macular anatomical relationships need a synthetic approach. Acta Otolaryngol Supply, 545(*), 25–28.CrossRefGoogle Scholar
  53. Ross, M. (2003). The evolution of concepts of vestibular peripheral information processing: toward the dynamic, adaptive, parallel processing macular model. Acta Oto-laryngologica, 123(7), 784–794. Scholar
  54. Ross, M., Dayhoff, J., Mugler, D. (1990). Toward modeling a dynamic biological neural network. Mathematical and Computer Modelling, 13(7), 97–105.PubMedCrossRefGoogle Scholar
  55. Ross, M., Linton S., Parnas, B. (2000). Simulation studies of vestibular macular afferent-discharge patterns using a new, quasi-3-d finite volume method. Journal of Computational Neuroscience, 8(1), 5–18.PubMedCrossRefGoogle Scholar
  56. Rowe, H., & Peterson, E. (2004). Quantitative analysis of stereociliari arrays on vestibular hair cells. Hearing Research, 190, 10–24.PubMedCrossRefGoogle Scholar
  57. Rowe, M., & Peterson, E. (2006). Autocorrelation analysis of hair bundle structure in the utricle. Journal of Neurophysiology, 96(5), 2653–2669.PubMedCrossRefGoogle Scholar
  58. Rumelhart, D.E., Hintont, G.E., Williams R.J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. London.CrossRefGoogle Scholar
  59. Sato, H., Sando, I., Takahashi, H. (1992). Computer-aided three-dimensional measurement of the human vestibular apparatus. Otolaryngology–Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 107(3), 405–409. Scholar
  60. Si, X., Angelaki, D., Dickman, J. (1997). Response properties of pigeon otolith afferents to linear acceleration. Experimental Brain Research, 117, 242–250.CrossRefGoogle Scholar
  61. Si, X., Zakir, M.M., Dickman, J.D. (2003). Afferent innervation of the utricular macula in Pigeons. Journal of Neurophysiology, 89(3), 1660–1677. doi: 10.1152/jn.00690.2002.PubMedCrossRefGoogle Scholar
  62. Simmons, D.D., Tong, B., Schrader, A.D., Hornak, A.J. (2010). Oncomodulin identifies different hair cell types in the mammalian inner ear. Journal of Comparative Neurology, 518(18), 3785–3802. doi: 10.1002/cne.22424.PubMedCrossRefGoogle Scholar
  63. Smith, C., & Goldberg, J. (1986). A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents. Biological Cybernetics, 54(1), 41–51.PubMedCrossRefGoogle Scholar
  64. Spoedlin, H. (1966). The vestibular system and its deseases In R.J. Wolfson (Ed.), The ultrastructure of the vestibular sense organ. Philadelphia: University of Pennsylvania Press.Google Scholar
  65. Spoon, C., Moravec, W., Rowe, M., Grant, J., Peterson, E. (2011). Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure. Journal of Neurophysiology, 106(6), 2950–2963.PubMedCrossRefGoogle Scholar
  66. Straka, H., Beraneck, M., Rohregger, M., Moore, L.E., Vidal, P.P., Vibert, N. (2004). Second-order vestibular neurons form separate populations with different membrane and discharge properties. Journal of Neurophysiology, 92(2), 845–861. doi: 10.1152/jn.00107.2004.PubMedCrossRefGoogle Scholar
  67. Takagi, A., & Sando, I. (1988). Computer-aided three-dimensional reconstruction and measurement of the vestibular end-organs. Otolaryngology–Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck Surgery, 98(3), 195–202. Scholar
  68. Tomko, D., Peterka, R., Schor, R., O’Leary, D. (1981). Response dynamics of horizontal canal afferents in barbiturate-anesthetized cats. Journal of Neurophysiology, 45(3), 376–396.PubMedGoogle Scholar
  69. Tribukait, A., & Rosenhall, U. (2001). Directional sensitivity of the human macula utriculi based on morphological characteristics. Audiology & Neuro-otology, 6(2), 98–107. Scholar
  70. Tribukait, A., Rosenhall, U., Osterdahl, B. (2005). Morphological characteristics of the human macula sacculi. Audiology & Neuro-otology, 10(2), 90–96. doi: 10.1159/000083364.CrossRefGoogle Scholar
  71. Vilares, I., & Kording, K. (2011). Bayesian models: the structure of the world, uncertainty, behavior, and the brain. Annals of New-York Adademy of Sciences, 1224, 22–39.CrossRefGoogle Scholar
  72. Watanuki, K., Kawamoto, K., Katagiri, S. (1971). Structure of the otolithic layers on the maculae sacculi and utriculi in the guinea pig. Equilibrium Research Supplementary, 2, 41–48.CrossRefGoogle Scholar
  73. Xue, J., & Peterson, E. (2006). Hair bundle heights on the utricle: differences between macular locations and hair cell types. Journal of Neurophysiology, 95, 176–186.Google Scholar
  74. Zakir, M., Huss, D., Dickman, J.D. (2003). Afferent innervation patterns of the saccule in pigeons. Journal of Neurophysiology, 89(1), 534–550. doi: 10.1152/jn.00817.2001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mariella Dimiccoli
    • 1
  • Benoît Girard
    • 2
    • 3
  • Alain Berthoz
    • 4
  • Daniel Bennequin
    • 5
  1. 1.Laboratoire de Mathématiques Appliquées à Paris 5 (MAP5)Université Paris Descartes (Paris V)ParisFrance
  2. 2.Institut des Systèmes Intelligents et de Robotique (ISIR)Université Pierre et Marie Curie (Paris VI)ParisFrance
  3. 3.CNRS Institut des Systèmes Intelligents et de Robotique (ISIR)ParisFrance
  4. 4.Laboratoire de Physiologie de la Perception et de l’Action (LPPA)Collège-de-FranceParisFrance
  5. 5.Géométrie et dynamiqueUniversité Paris Diderot (Paris VII)ParisFrance

Personalised recommendations