Advertisement

Journal of Computational Neuroscience

, Volume 34, Issue 3, pp 521–531 | Cite as

A fast model of voltage-dependent NMDA receptors

  • Keivan Moradi
  • Kamran Moradi
  • Mahin Ganjkhani
  • Mojtaba Hajihasani
  • Shahriar Gharibzadeh
  • Gholamreza KakaEmail author
Article

Abstract

NMDA receptors are among the crucial elements of central nervous system models. Recent studies show that both conductance and kinetics of these receptors are changing voltage-dependently in some parts of the brain. Therefore, several models have been introduced to simulate their current. However, on the one hand, kinetic models—which are able to simulate these voltage-dependent phenomena—are computationally expensive for modeling of large neural networks. On the other hand, classic exponential models, which are computationally less expensive, are not able to simulate the voltage-dependency of these receptors, accurately. In this study, we have modified these classic models to endow them with the voltage-dependent conductance and time constants. Temperature sensitivity and desensitization of these receptors are also taken into account. We show that, it is possible to simulate the most important physiological aspects of NMDA receptor’s behavior using only three to four differential equations, which is significantly smaller than the previous kinetic models. Consequently, it seems that our model is both fast and physiologically plausible and therefore is a suitable candidate for the modeling of large neural networks.

Keywords

Magnesium block Slow magnesium unblock Desensitization Classic exponential model 

References

  1. Banke, T. G., & Traynelis, S. F. (2003). Activation of NR1/NR2B NMDA receptors. Nature Neuroscience, 6(2), 144–152. doi: 10.1038/nn1000.PubMedCrossRefGoogle Scholar
  2. Benveniste, M., & Mayer, M. L. (1995). Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. Journal de Physiologie, 483(Pt 2), 367–384.Google Scholar
  3. Clarke, R. J., & Johnson, J. W. (2006). NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. Journal of Neuroscience, 26(21), 5825–5834. doi: 10.1523/JNEUROSCI.0577-06.2006.PubMedCrossRefGoogle Scholar
  4. Clarke, R. J., & Johnson, J. W. (2008). Voltage-dependent gating of NR1/2B NMDA receptors. Journal de Physiologie, 586(Pt 23), 5727–5741. doi: 10.1113/jphysiol.2008.160622.CrossRefGoogle Scholar
  5. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems (Computational neuroscience). Cambridge: Massachusetts Institute of Technology Press.Google Scholar
  6. Enoki, R., Kiuchi, T., Koizumi, A., Sasaki, G., Kudo, Y., & Miyakawa, H. (2004). NMDA receptor-mediated depolarizing after-potentials in the basal dendrites of CA1 pyramidal neurons. Neuroscience Research, 48(3), 325–333. doi: 10.1016/j.neures.2003.11.011.PubMedCrossRefGoogle Scholar
  7. Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. Journal de Physiologie, 563(Pt 2), 345–358. doi: 10.1113/jphysiol.2004.080028.Google Scholar
  8. Hestrin, S., Sah, P., & Nicoll, R. A. (1990). Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron, 5(3), 247–253.PubMedCrossRefGoogle Scholar
  9. Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. Journal of Neuroscience, 10(9), 3178–3182.PubMedGoogle Scholar
  10. Kampa, B. M., Clements, J., Jonas, P., & Stuart, G. J. (2004). Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. Journal de Physiologie, 556(Pt 2), 337–345. doi: 10.1113/jphysiol.2003.058842.CrossRefGoogle Scholar
  11. Kim, N. K., & Robinson, H. P. (2011). Effects of divalent cations on slow unblock of native NMDA receptors in mouse neocortical pyramidal neurons. European Journal of Neuroscience, 34(2), 199–212. doi: 10.1111/j.1460-9568.2011.07768.x.PubMedCrossRefGoogle Scholar
  12. Korinek, M., Sedlacek, M., Cais, O., Dittert, I., & Vyklicky, L., Jr. (2010). Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents. Neuroscience, 165(3), 736–748. doi: 10.1016/j.neuroscience.2009.10.058.PubMedCrossRefGoogle Scholar
  13. Major, G., Polsky, A., Denk, W., Schiller, J., & Tank, D. W. (2008). Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. Journal of Neurophysiology, 99(5), 2584–2601. doi: 10.1152/jn.00011.2008.PubMedCrossRefGoogle Scholar
  14. Misra, C., Brickley, S. G., Wyllie, D. J., & Cull-Candy, S. G. (2000). Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells. Journal de Physiologie, 525(Pt 2), 299–305.CrossRefGoogle Scholar
  15. Polsky, A., Mel, B., & Schiller, J. (2009). Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. Journal of Neuroscience, 29(38), 11891–11903. doi: 10.1523/JNEUROSCI.5250-08.2009.PubMedCrossRefGoogle Scholar
  16. Schiller, J., & Schiller, Y. (2001). NMDA receptor-mediated dendritic spikes and coincident signal amplification. Current Opinion in Neurobiology, 11(3), 343–348.PubMedCrossRefGoogle Scholar
  17. Sobolevsky, A. I., & Yelshansky, M. V. (2000). The trapping block of NMDA receptor channels in acutely isolated rat hippocampal neurones. Journal de Physiologie, 526(Pt 3), 493–506.Google Scholar
  18. Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Journal de Physiologie, 482(Pt 2), 325–352.Google Scholar
  19. Suzuki, T., Kodama, S., Hoshino, C., Izumi, T., & Miyakawa, H. (2008). A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons. European Journal of Neuroscience, 28(3), 521–534. doi: 10.1111/j.1460-9568.2008.06324.x.PubMedCrossRefGoogle Scholar
  20. Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacological Reviews, 62(3), 405–496. doi: 10.1124/pr.109.002451.PubMedCrossRefGoogle Scholar
  21. Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., & Nelson, S. B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. Journal of Neuroscience, 17(20), 7926–7940.PubMedGoogle Scholar
  22. Vargas-Caballero, M., & Robinson, H. P. (2003). A slow fraction of Mg2+ unblock of NMDA receptors limits their contribution to spike generation in cortical pyramidal neurons. Journal of Neurophysiology, 89(5), 2778–2783. doi: 10.1152/jn.01038.2002.PubMedCrossRefGoogle Scholar
  23. Vargas-Caballero, M., & Robinson, H. P. (2004). Fast and slow voltage-dependent dynamics of magnesium block in the NMDA receptor: the asymmetric trapping block model. Journal of Neuroscience, 24(27), 6171–6180. doi: 10.1523/JNEUROSCI.1380-04.2004.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Keivan Moradi
    • 1
  • Kamran Moradi
    • 2
  • Mahin Ganjkhani
    • 3
  • Mojtaba Hajihasani
    • 4
  • Shahriar Gharibzadeh
    • 4
  • Gholamreza Kaka
    • 1
    Email author
  1. 1.Neuroscience Research CenterBaqyatallah (a.s.) Medical Sciences UniversityTehranIran
  2. 2.Tehran University of Medical SciencesTehranIran
  3. 3.Department of physiology and pharmacologyZanjan University of Medical SciencesZanjanIran
  4. 4.Neuromuscular systems Laboratory, Faculty of Biomedical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations