Journal of Computational Neuroscience

, Volume 34, Issue 3, pp 369–389 | Cite as

Modulation of hippocampal rhythms by subthreshold electric fields and network topology

  • Julia Berzhanskaya
  • Nick Chernyy
  • Bruce J. Gluckman
  • Steven J. Schiff
  • Giorgio A. AscoliEmail author


Theta (4–12 Hz) and gamma (30–80 Hz) rhythms are considered important for cortical and hippocampal function. Although several neuron types are implicated in rhythmogenesis, the exact cellular mechanisms remain unknown. Subthreshold electric fields provide a flexible, area-specific tool to modulate neural activity and directly test functional hypotheses. Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Electrophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. In one configuration, GABAergic axo-dendritic feedback on pyramidal cells is only effective in proximal but not distal layers. An alternative configuration requires two distinct perisomatic interneuron classes, one exclusively receiving excitatory contacts, the other additionally targeted by inhibition. These observations suggest novel roles for particular classes of oriens and basket cells. The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. Independent of network configuration, positive electric fields decrease, while negative fields increase the theta/gamma ratio. Moreover, electric fields differentially affect average theta frequency depending on specific synaptic connectivity. These results support the testable prediction that subthreshold electric fields can alter hippocampal rhythms, suggesting new approaches to explore their cognitive functions and underlying circuitry.


Pyramidal Interneuron Theta-rhythm Gamma-rhythm 




cornus ammonis area 1


cornus ammonis area 3


Schaffer Collateral




stratum oriens


stratum pyramidale


stratum radiatum


stratum lacunosum moleculare




Oriens-lacunosum moleculare


interspike interval


interburst interval




Inhibitory postsynaptic currents/potentials


Excitatory postsynaptic currents/potentials


4-aminobutanoic acid


alpha- Amino −3 hydroxyl −5 Methyl- 4- isoxazole-Propanoic acid


N-Methyl-D-aspartic acid

Network model


pyramidal cell (excitatory)


oriens cell (inhibitory, dendritic targeting, O-Bi/OLM)


basket cell (inhibitory, perisomatic targeting, B1/B2)


Network configuration with strong O-B connections and weak O-P connections


Network configuration with weak O-B connections and strong O-P connections


basket cell with vertically oriented dendrites


oriens cell with vertically oriented dendrites



The authors are thankful to Drs. C. McIntyre and M. Robertson for sharing initial code of extracellular electric field implementation in NEURON, Dr. John L. Baker and Mr. Kerry Brown for feedback on a previous version of the manuscript, and financial support from NIH grants R01 MH50006, K02 MH01493, R01 NS39600, R01 AG25633, R21 NS58816, and ONR grant MURI N00014-10-1-0198.


  1. Ali, A. B., & Thomson, A. M. (1998b). Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. The Journal of Physiology, 507(1), 185–199.CrossRefGoogle Scholar
  2. Ali, A. B., Deuchars, J., Pawelzik, H., & Thomson, A. M. (1998a). CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. The Journal of Physiology, 507(1), 201–217.CrossRefGoogle Scholar
  3. Anastassiou, C. A., Montgomery, S. M., Barahona, M., Buzsáki, G., & Koch, C. (2010). The effect of spatially inhomogeneous extracellular electric fields on neurons. Journal of Neuroscience, 30(5), 1925–1936.PubMedCrossRefGoogle Scholar
  4. Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho. org: a central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRefGoogle Scholar
  5. Bédard, C., Rodrigues, S., Roy, N., Contreras, D., & Destexhe, A. (2010). Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials: intracellular-LFP transfer function. Journal of Computational Neuroscience, 29(3), 389–403.PubMedCrossRefGoogle Scholar
  6. Berzhanskaya, J., Chernyy, N., Gluckman, B. J., & Schiff, S. J. (2005). Mechanisms of electric field suppression of neuronal activity in a hippocampal slice model of epilepsy. Epilepsia, 46(S8), 329.Google Scholar
  7. Berzhanskaya, J., Gorchetchnikov, A., & Schiff, S. J. (2007). Switching between gamma and theta: dynamic network control using subthreshold electric fields. Neurocomputing, 70(10–12), 2091–2095.PubMedCrossRefGoogle Scholar
  8. Bikson, M., McIntyre, C. C., Inoue, M., Akiyama, H., Fox, J. E., Grill, W. M., et al. (2002). Effect of uniform DC electric fields on CA1 hippocampal pyramidal neurons. Orlando: Society of Neuroscence Abstracts., 446.1.Google Scholar
  9. Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., et al. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(1), 175–190.PubMedCrossRefGoogle Scholar
  10. Börgers, C., Epstein, S., & Kopell, N. J. (2005). Background gamma rhythmicity and attention in cortical local circuits: a computational study. PNAS, 102(19), 7002–7007.PubMedCrossRefGoogle Scholar
  11. Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325–340.PubMedCrossRefGoogle Scholar
  12. Carnevale N. T., & Hines M. L. (2006). The NEURON Book. Cambridge University Press.Google Scholar
  13. Chan, C. Y., & Nicholson, C. (1986). Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. The Journal of Physiology, 371, 89–114.PubMedGoogle Scholar
  14. Chan, C. Y., Houndsgaard, J., & Nicholson, C. (1988). Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. The Journal of Physiology, 402, 751–771.PubMedGoogle Scholar
  15. Chapman, C. A., & Lacaille, J. C. (1999). Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing. Journal of Neuroscience, 19(19), 8637–8645.PubMedGoogle Scholar
  16. Cobb, S. R., Larkman, P. M., Bulters, D. O., Oliver, L., Gill, C. H., & Davies, C. H. (2003). Activation of Ih is necessary for patterning of mGluR and mAChR induced network activity in the hippocampal CA3 region. Neuropharmacology, 44(3), 293–303.PubMedCrossRefGoogle Scholar
  17. Colling, S. B., Stanford, I. M., Traub, R. D., & Jefferys, J. G. (1998). Limbic gamma rhythms. I. Phase-locked oscillations in hippocampal CA1 and subiculum. Journal of Neurophysiology, 80(1), 155–161.PubMedGoogle Scholar
  18. Cossart, R., Petanjek, Z., Dumitriu, D., Hirsch, J. C., Ben-Ari, Y., Esclapez, M., et al. (2006). Interneurons targeting similar layers receive synaptic inputs with similar kinetics. Hippocampus, 16(4), 408–420.PubMedCrossRefGoogle Scholar
  19. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., & Buzsaki, G. (1999). Fast network oscillations in the hippocampal CA1 region of the behaving rat. Journal of Neuroscience, 19(16), RC20.PubMedGoogle Scholar
  20. Csicsvari, J., Jamieson, B., Wise, K. D., & Buzsaki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron, 37(2), 311–322.PubMedCrossRefGoogle Scholar
  21. Deans, J. K., Powell, A. D., & Jefferys, J. G. (2007). Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. The Journal of Physiology, 583(Pt 2), 555–565.PubMedCrossRefGoogle Scholar
  22. Dobrunz, L. E., Huang, E. P., & Stevens, C. F. (1997). Very short-term plasticity in hippocampal synapses. PNAS, 94(26), 14843–14847.PubMedCrossRefGoogle Scholar
  23. Fellous, J. M., & Sejnowski, T. J. (2000). Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus, 10(2), 187–197.PubMedCrossRefGoogle Scholar
  24. Fisahn, A., Contractor, A., Traub, R. D., Buhl, E. H., Heinemann, S. F., & McBain, C. J. (2004). Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. Journal of Neuroscience, 24(43), 9658–9668.PubMedCrossRefGoogle Scholar
  25. Fischer, Y., Wittner, L., Freund, T. F., & Gahwiler, B. H. (2002). Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures. The Journal of Physiology, 539(3), 857–868.PubMedCrossRefGoogle Scholar
  26. Freund, T. F. (2003). Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends in Neuroscience, 26(9), 489–495.CrossRefGoogle Scholar
  27. Freund, T. F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336(6195), 170–173.PubMedCrossRefGoogle Scholar
  28. Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470.PubMedCrossRefGoogle Scholar
  29. Fröhlich, F., & McCormick, D. A. (2010). Endogenous electric fields may guide neocortical network activity. Neuron, 67(1), 129–143.PubMedCrossRefGoogle Scholar
  30. Fuchs, E. C., Zivkovic, A. R., Cunningham, M. O., Middleton, S., Lebeau, F. E., Bannerman, D. M., et al. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron, 53(4), 591–604.PubMedCrossRefGoogle Scholar
  31. Gillies, M. J., Traub, R. D., LeBeau, F. E., Davies, C. H., Gloveli, T., Buhl, E. H., et al. (2002). A model of atropine-resistant theta oscillations. The Journal of Physiology, 543, 779–793.PubMedCrossRefGoogle Scholar
  32. Gloveli, T., Dugladze, T., Rotstein, H. G., Traub, R. D., Monyer, H., Heinemann, U., et al. (2005a). Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. PNAS, 102(37), 13295–13300.CrossRefGoogle Scholar
  33. Gloveli, T., Dugladze, T., Saha, S., Monyer, H., Heinemann, U., Traub, R. D., et al. (2005b). Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. The Journal of Physiology, 562(1), 131–147.CrossRefGoogle Scholar
  34. Gluckman, B. J., Netoff, T. I., Neel, E. J., Ditto, W. L., Spano, M. L., & Schiff, S. J. (1996a). Stochastic resonance in a neuronal network from mammalian brain. Physical Review Letters, 77, 4098–4101.CrossRefGoogle Scholar
  35. Gluckman, B. J., Neel, E. J., Netoff, T. I., Ditto, W. L., Spano, M. L., & Schiff, S. J. (1996b). Electric field suppression of epileptiform activity in hippocampal slices. Journal of Neurophysiology, 76, 4202–4205.Google Scholar
  36. Gluckman, B. J., Nguyen, H., Weinstein, S. L., & Schiff, S. J. (2001). Adaptive electric field suppression of epileptic seizures. Journal of Neuroscience, 21, 590–600.PubMedGoogle Scholar
  37. Gold, C., Henze, D. A., Koch, C., & Buzsáki, G. (2006). On the origin of the extracellular action potential waveform: A modeling study. Journal of Neurophysiology, 95(5), 3113–3128.Google Scholar
  38. Goutagny, R., Jackson, J., & Williams, S. (2009). Self-generated theta oscillations in the hippocampus. Nature Neuroscience, 12(12), 1491–1493.PubMedCrossRefGoogle Scholar
  39. Gulyas, A. I., Hajos, N., & Freund, T. F. (1996). Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. Journal of Neuroscience, 16(10), 3397–3411.PubMedGoogle Scholar
  40. Gulyas, A. I., Megias, M., Emri, Z., & Freund, T. F. (1999). Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. Journal of Neuroscience, 19(22), 10082–10097.PubMedGoogle Scholar
  41. Hájos, N., & Mody, I. (1997). Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells. Journal of Neuroscience, 17(21), 8427–8442.PubMedGoogle Scholar
  42. Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A., & Buzsáki, G. (2001). Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron, 32(1), 141–149.PubMedCrossRefGoogle Scholar
  43. Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K + channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875.PubMedCrossRefGoogle Scholar
  44. Katona, I., Acsády, L., & Freund, T. F. (1999). Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience, 88(1), 37–55.PubMedCrossRefGoogle Scholar
  45. Klausberger, T., Magill, P. J., Marton, L. F., Roberts, J. D., Cobden, P. M., Buzsaki, G., et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844–848.PubMedCrossRefGoogle Scholar
  46. Klausberger, T., Marton, L. F., Baude, A., Roberts, J. D., Magill, P. J., & Somogyi, P. (2004). Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nature Neuroscience, 7(1), 41–47.PubMedCrossRefGoogle Scholar
  47. Klausberger, T., Marton, L. F., O’Neill, J., Huck, J. H., Dalezios, Y., Fuentealba, P., et al. (2005). Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. Journal of Neuroscience, 25(42), 9782–9793.PubMedCrossRefGoogle Scholar
  48. Kullmann, D. M. (2011). Interneuron networks in the hippocampus. Current Opinions in Neurobiology, 21(5), 709–716.Google Scholar
  49. Kunec, S., Hasselmo, M. E., & Kopell, N. (2005). Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. Journal of Neurophysiology, 94(1), 70–82.PubMedCrossRefGoogle Scholar
  50. Li, X., & Ascoli, G. A. (2006). Computational simulation of the input–output relationship in hippocampal pyramidal cells. Journal of Computational Neuroscience, 21(2), 191–209.PubMedCrossRefGoogle Scholar
  51. Li, X., & Ascoli, G. A. (2008). Effects of synaptic synchrony on the neuronal input–output relationship. Neural Computation, 20(7), 1717–1731.PubMedCrossRefGoogle Scholar
  52. Maccaferri, G. (2005). Stratum oriens horizontal interneurone diversity and hippocampal network dynamics. The Journal of Physiology, 562(1), 73–80.PubMedCrossRefGoogle Scholar
  53. Maccaferri, G., Roberts, J. D., Szucs, P., Cottingham, C. A., & Somogyi, P. (2000). Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. The Journal of Physiology, 524(1), 91–116.PubMedCrossRefGoogle Scholar
  54. Magee, J. C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. Journal of Neuroscience, 18, 1–12.Google Scholar
  55. Magee, J. C., & Carruth, M. (1999). Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 82(4), 1895–1901.PubMedGoogle Scholar
  56. Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3(9), 895–903.PubMedCrossRefGoogle Scholar
  57. Mann, E. O., Radcliffe, C. A., & Paulsen, O. (2005). Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. The Journal of Physiology, 562(1), 55–63.PubMedCrossRefGoogle Scholar
  58. Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K + conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7(1), 5–15.PubMedCrossRefGoogle Scholar
  59. Migliore, M., Messineo, L., & Ferrante, M. (2004). Dendritic Ih selectively blocks temporal summation of unsynchronized sistal inputs in CA1 pyramidal neurons. Journal of Computational Neuroscience, 16(1), 5–13.PubMedCrossRefGoogle Scholar
  60. Migliore, M., Ferrante, M., & Ascoli, G. A. (2005). Signal propagation in oblique dendrites of CA1 pyramidal cells. Journal of Neurophysiology, 94, 4145–4155.PubMedCrossRefGoogle Scholar
  61. Morozov, Y., Khalilov, I., Ben-Ari, Y., & Represa, A. (2002). Correlative fluorescence and electron microscopy of biocytin-filled neurons with a preservation of the postsynaptic ultrastructure. Journal of Neuroscience Methods, 117(1), 81–85.PubMedCrossRefGoogle Scholar
  62. Orbán, G., Kiss, T., & Erdi, P. (2006). Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. Journal of Neurophysiology, 96(6), 2889–2904.PubMedCrossRefGoogle Scholar
  63. Oren, I., Mann, E. O., Paulsen, O., & Hájos, N. (2006). Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. Journal of Neuroscience, 26(39), 9923–9934.PubMedCrossRefGoogle Scholar
  64. Otmakhova, N. A., Otmakhov, N., & Lisman, J. E. (2002). Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells. Journal of Neuroscience, 22(4), 1199–1207.PubMedGoogle Scholar
  65. Ozen, S., Sirota, A., Belluscio, M. A., Anastassiou, C. A., Stark, E., Koch, C., et al. (2010). Transcranial electric stimulation entrains cortical neuronal populations in rats. Neuroscience, 30(34), 11476–11485.PubMedCrossRefGoogle Scholar
  66. Park, E. H., Barreto, E., Gluckman, B. J., Schiff, S. J., & So, P. (2005). A model of the effects of applied electric fields on neuronal synchronization. Journal of Computational Neuroscience, 19(1), 53–70.PubMedCrossRefGoogle Scholar
  67. Parra, L., & Bikson, M. (2004). Model of the effect of extracellular fields on spike time coherence. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2(6), 4584–4587.CrossRefGoogle Scholar
  68. Patenaude, C., Nurse, S., & Lacaille, J. C. (2001). Sensitivity of synaptic GABA(A) receptors to allosteric modulators in hippocampal oriens-alveus interneurons. Synapse, 41(1), 29–39.PubMedCrossRefGoogle Scholar
  69. Poolos, N. P., Migliore, M., & Johnston, D. (2002). Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nature Neuroscience, 5(8), 767–774.PubMedGoogle Scholar
  70. Radman, T., Su, Y., An, J. H., Parra, L. C., & Bikson, M. (2007). Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. Journal of Neuroscience, 27(11), 3030–3036.PubMedCrossRefGoogle Scholar
  71. Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience, 30(45), 15067–15079.PubMedCrossRefGoogle Scholar
  72. Richardson, K. A., Gluckman, B. J., Weinstein, S. L., Glosch, C. E., Moon, J. B., Gwinn, R. P., et al. (2003). In vivo modulation of hippocampal epileptiform activity with radial electric fields. Epilepsia, 44(6), 768–777.PubMedCrossRefGoogle Scholar
  73. Richardson, K. A., Schiff, S. J., & Gluckman, B. J. (2005). Control of traveling waves in the Mammalian cortex. Physical Review Letters, 94(2), 028103.PubMedCrossRefGoogle Scholar
  74. Rotstein, H. G., Pervouchine, D. D., Acker, C. D., Gillies, M. J., White, J. A., Buhl, E. H., et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of Neurophysiology, 94(2), 1509–1518.PubMedCrossRefGoogle Scholar
  75. Rushton, W. A. H. (1927). The effect upon the threshold for nervous excitation of the length of nerve exposed, and the angle between current and nerve. The Journal of Physiology, 63, 357–377.PubMedGoogle Scholar
  76. Schiff, S. J. (2012). Neural control engineering. Cambridge: MIT Press.Google Scholar
  77. Sik, A., Penttonen, M., Ylinen, A., & Buzsáki, G. (1995). Hippocampal CA1 interneurons: an in vivo intracellular labeling study. Journal of Neuroscience, 15(10), 6651–6665.PubMedGoogle Scholar
  78. Smith, M. A., Ellis-Davies, G. C., & Magee, J. C. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. The Journal of Physiology, 548(1), 245–258.PubMedCrossRefGoogle Scholar
  79. Somogyi, P., & Klausberger, T. (2005). Defined types of cortical interneurone structure space and spike timing in the hippocampus. The Journal of Physiology, 562(1), 9–26.PubMedCrossRefGoogle Scholar
  80. Sunderam, S., Chernyy, N., Peixoto, N., Mason, J. P., Weinstein, S. L., Schiff, S. J., et al. (2009). Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model. Journal of Neural Engineering, 6(4), 046009.PubMedCrossRefGoogle Scholar
  81. Tiesinga, P. H., Fellous, J. M., José, J. V., & Sejnowski, T. J. (2001). Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus, 11(3), 251–274.PubMedCrossRefGoogle Scholar
  82. Tort, A. B., Rotstein, H. G., Dugladze, T., Gloveli, T., & Kopell, N. J. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. PNAS, 104(33), 13490–13495.PubMedCrossRefGoogle Scholar
  83. Tranchina, D., & Nicholson, C. (1986). A model for the polarization of neurons by extrinsically applied electric fields. Biophysical Journal, 50(6), 1139–1156.PubMedCrossRefGoogle Scholar
  84. Traub, R. D., Bibbig, A., Fisahn, A., LeBeau, F. E., Whittington, M. A., & Buhl, E. H. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. European Journal of Neuroscience, 12(11), 4093–4106.PubMedCrossRefGoogle Scholar
  85. Watanabe, S., Hoffman, D. A., Migliore, M., & Johnston, D. (2002). Dendritic K + channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. PNAS, 99(12), 8366–8371.PubMedCrossRefGoogle Scholar
  86. Widmer, H., Ferrigan, L., Davies, C. H., & Cobb, S. R. (2006). Evoked slow muscarinic acetylcholinergic synaptic potentials in rat hippocampal interneurons. Hippocampus, 16(7), 617–628.PubMedCrossRefGoogle Scholar
  87. Williams, S. H., & Johnston, D. (1991). Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 66(3), 1010–1020.PubMedGoogle Scholar
  88. Williams, J. H., & Kauer, J. A. (1997). Properties of carbachol-induced oscillatory activity in rat hippocampus. Journal of Neurophysiology, 78(5), 2631–2640.PubMedGoogle Scholar
  89. Wong, T., Zhang, X. L., Asl, M. N., Wu, C. P., Carlen, P. L., & Zhang, L. (2005). Postnatal development of intrinsic GABAergic rhythms in mouse hippocampus. Neuroscience, 134(1), 107–120.PubMedCrossRefGoogle Scholar
  90. Wu, C., Shen, H., Luk, W. P., & Zhang, L. (2002). A fundamental oscillatory state of isolated rodent hippocampus. The Journal of Physiology, 540(Pt 2), 509–527.PubMedCrossRefGoogle Scholar
  91. Wulff, P., Ponomarenko, A. A., Bartos, M., Korotkova, T. M., Fuchs, E. C., Bähner, F., et al. (2009). Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. PNAS, 106(9), 3561–3566.PubMedCrossRefGoogle Scholar
  92. Ylinen, A., Soltész, I., Bragin, A., Penttonen, M., Sik, A., & Buzsáki, G. (1995). Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus, 5(1), 78–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Julia Berzhanskaya
    • 1
  • Nick Chernyy
    • 2
  • Bruce J. Gluckman
    • 3
  • Steven J. Schiff
    • 4
  • Giorgio A. Ascoli
    • 1
    Email author
  1. 1.Center for Neural Informatics, Structures, & Plasticity, and Molecular Neuroscience Department; Krasnow Institute for Advanced StudyGeorge Mason UniversityFairfaxUSA
  2. 2.Center for Neural Engineering, Departments of Engineering Science and MechanicsPenn State UniversityUniversity ParkUSA
  3. 3.Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery and BioengineeringPenn State UniversityUniversity ParkUSA
  4. 4.Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery and PhysicsPenn State UniversityUniversity ParkUSA

Personalised recommendations