Journal of Computational Neuroscience

, Volume 33, Issue 3, pp 495–514 | Cite as

Calcium control of triphasic hippocampal STDP

Article

Abstract

Synaptic plasticity is believed to represent the neural correlate of mammalian learning and memory function. It has been demonstrated that changes in synaptic conductance can be induced by approximately synchronous pairings of pre- and post- synaptic action potentials delivered at low frequencies. It has also been established that NMDAr-dependent calcium influx into dendritic spines represents a critical signal for plasticity induction, and can account for this spike-timing dependent plasticity (STDP) as well as experimental data obtained using other stimulation protocols. However, subsequent empirical studies have delineated a more complex relationship between spike-timing, firing rate, stimulus duration and post-synaptic bursting in dictating changes in the conductance of hippocampal excitatory synapses. Here, we present a detailed biophysical model of single dendritic spines on a CA1 pyramidal neuron, describe the NMDAr-dependent calcium influx generated by different stimulation protocols, and construct a parsimonious model of calcium driven kinase and phosphatase dynamics that dictate the probability of stochastic transitions between binary synaptic weight states in a Markov model. We subsequently demonstrate that this approach can account for a range of empirical observations regarding the dynamics of synaptic plasticity induced by different stimulation protocols, under regimes of pharmacological blockade and metaplasticity. Finally, we highlight the strengths and weaknesses of this parsimonious, unified computational synaptic plasticity model, discuss differences between the properties of cortical and hippocampal plasticity highlighted by the experimental literature, and the manner in which further empirical and theoretical research might elucidate the cellular basis of mammalian learning and memory function.

Keywords

Synaptic plasticity Calcium Learning Memory Hippocampus 

Supplementary material

10827_2012_397_MOESM1_ESM.pdf (32 kb)
Supplementary Fig. 1Summary of synaptic plasticity data generated with τbAP,s = 55 ms and τNMDA,s = 152 ms. (a) Overall synaptic weight change generated by 100 spike pairings delivered at 5 Hz with βP = 0.45, βD = 0.24, kP = 0.04 and kD = 4 × 10-4, where kinase and phosphatase dynamics are controlled by peaks in intracellular calcium concentration. Horizontal dashed line represents zero change in total synaptic weight. (b) Synaptic weight change generated by 100 triplet pairings delivered at 5 Hz with all other parameter values the same as (a). (c) Synaptic weight change generated by tetanic pre-synaptic stimulation delivered at various firing rates in the presence of stochastic post-synaptic activity that follows the statistics described in (Wittenberg and Wang 2006), and all other parameter values the same as in (a). (d) Synaptic weight change generated by 100 pre-synaptic inputs delivered at 2 Hz while the post-synaptic membrane voltage is held fixed at various levels of depolarisation, and all other parameter values the same as in (a). (e) Synaptic weight change generated by 10 causal pre- and / or post- synaptic burst pairings delivered at 5 Hz in the experimental data from (Pike et al. 1999) (grey) and in the model (red), where all other parameters are the same as in (a). (f) Synaptic weight change generated by 60 triplet pairings with various temporal offsets delivered at 1 Hz in the experimental data from (Wang et al. 2005) (grey) and in the model (red), where all other parameters are the same as in (a). (PDF 32 kb)

References

  1. Abarbanel, H. D. I., Gibb, L., Huerta, R., & Rabinovich, M. I. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89, 214–226.PubMedCrossRefGoogle Scholar
  2. Abarbanel, H. D. I., Talathi, S. S., Gibb, L., & Rabinovich, M. I. (2005). Synaptic plasticity with discrete state synapses. Physical Review E, 72, 031914.CrossRefGoogle Scholar
  3. Aihara, T., Abiru, Y., Yamazaki, Y., Watanabe, H., Fukushima, Y., & Tsukuda, M. (2007). The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network. Neuroscience, 145, 80–87.PubMedCrossRefGoogle Scholar
  4. Artola, A., & Singer, W. (1993). Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neuroscience, 16, 480–487.CrossRefGoogle Scholar
  5. Bagal, A. A., Kao, J., Tang, C.-M., & Thompson, S. M. (2005). Long-term potentiation of exogenous glutamate responses at single dendritic spines. PNAS, 102, 14434–14439.PubMedCrossRefGoogle Scholar
  6. Bender, V. A., Bender, K. J., Brasier, D. J., & Feldman, D. E. (2006). Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. Journal of Neuroscience, 26, 4166–4177.PubMedCrossRefGoogle Scholar
  7. Bi, G.-Q., & Poo, M.-M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 77, 551–555.Google Scholar
  8. Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2, 32–48.PubMedGoogle Scholar
  9. Bliss, T., Collingridge, G., & Morris, R. (2007). Synaptic plasticity in the hippocampus. In P. Andersen, R. Morris, D. Amaral, T. Bliss, J. O’Keefe (Eds.), The hippocampus book (pp. 343–474). Oxford University Press.Google Scholar
  10. Buchanan, K. A., & Mellor, J. R. (2007). The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones. The Journal of Physiology, 585, 429–445.PubMedCrossRefGoogle Scholar
  11. Buchanan, K. A., & Mellor, J. R. (2010). The activity requirements for spike timing-dependent plasticity in the hippocampus. Frontiers in Synaptic Neuroscience, 2, 11.PubMedCrossRefGoogle Scholar
  12. Buchler, N. E., & Cross, F. R. (2009). Protein sequestration generates a flexible ultrasensitive response in a genetic network. Molecular Systems Biology, 5, 272.PubMedCrossRefGoogle Scholar
  13. Buonomano, D. V. (2005). A learning rule for the emergence of stable dynamics and timing in recurrent networks. Journal of Neurophysiology, 94, 2275–2283.PubMedCrossRefGoogle Scholar
  14. Bush, D., Philippides, A., Husbands, P., & O’Shea, M. (2010). Dual coding with STDP in an auto-associative network model of the hippocampus. PLoS Computational Biology, 6, e1000839.PubMedCrossRefGoogle Scholar
  15. Buzsáki, G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 68, 362–385.PubMedCrossRefGoogle Scholar
  16. Canepari, M., Djurisic, M., & Zecevic, D. (2007). Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post- synaptic activity: a combined voltage- and calcium- imaging study. The Journal of Physiology, 580, 463–484.PubMedCrossRefGoogle Scholar
  17. Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: a Hebbian learning rule. Annual Reviews in Neuroscience, 31, 25–46.CrossRefGoogle Scholar
  18. Christie, B. R., Magee, J. C., & Johnston, D. (1996). The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. Learning and Memory, 3, 160–169.PubMedCrossRefGoogle Scholar
  19. Citri, A., & Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33, 18–41.PubMedCrossRefGoogle Scholar
  20. Cooke, S. F., & Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129, 1659–1673.PubMedCrossRefGoogle Scholar
  21. Cormier, R. J., Greenwood, A. C., & Connor, J. A. (2001). Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. Journal of Neurophysiology, 85, 399–406.PubMedGoogle Scholar
  22. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience (pp. 180–183). London: MIT.Google Scholar
  23. Debanne, D., Gähwiler, B. H., & Thompson, S. M. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. The Journal of Physiology, 507, 237–247.PubMedCrossRefGoogle Scholar
  24. Desai, N. S. (2003). Homeostatic plasticity in the CNS: synaptic and intrinsic forms. Journal of Physiology, Paris, 97, 391–402.PubMedCrossRefGoogle Scholar
  25. Destexhe, A., Mainen, Z., & Sejnowski, T. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1, 195–230.PubMedCrossRefGoogle Scholar
  26. Dudek, S. M., & Bear, M. F. (1992). Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. PNAS, 89, 4363–4367.PubMedCrossRefGoogle Scholar
  27. Dudman, J. T., Tsay, D., & Siegelbaum, S. A. (2007). A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron, 56, 866–879.PubMedCrossRefGoogle Scholar
  28. Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. A., & Traynelis, S. F. (2005). Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. The Journal of Physiology, 563, 345–358.PubMedCrossRefGoogle Scholar
  29. Fan, Y., Fricker, D., Brager, D. H., Chen, X., Lu, H.-C., Chitwood, R. A., & Johnston, D. (2005). Activity-dependent decrease of excitability in rat hippocampal neurons through increases in Ih. Nature Neuroscience, 8, 1542–1551.PubMedCrossRefGoogle Scholar
  30. Fernandez de Sevilla, D., Fuenzalida, M., Porto Pazos, A. B., & Buno, W. (2007). Selective shunting of the NMDA EPSP component by the slow afterhyperpolarisation in rat CA1 pyramidal neurons. Journal of Neurophysiology, 97, 3242–3255.PubMedCrossRefGoogle Scholar
  31. Fiete, I. R., Senn, W., Wang, C., & Hahnloser, R. H. R. (2010). Spike time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron, 65, 563–576.PubMedCrossRefGoogle Scholar
  32. Frey, U., & Morris, R. G. (1997). Synaptic tagging and long-term potentiation. Nature, 385, 533–536.PubMedCrossRefGoogle Scholar
  33. Frick, A., Magee, J., & Johnston, D. (2004). LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature Neuroscience, 7, 126–135.PubMedCrossRefGoogle Scholar
  34. Froemke, R. C., Poo, M. M., & Dan, Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature, 434, 221–225.PubMedCrossRefGoogle Scholar
  35. Froemke, R. C., Tsay, I. H., Raad, M., Long, J. D., & Dan, Y. (2006). Contribution of individual spikes in burst-induced long-term synaptic modification. Journal of Neurophysiology, 95, 1620–1629.PubMedCrossRefGoogle Scholar
  36. Froemke, R. C., Debanne, D., & Bi, G. Q. (2010). Temporal modulation of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 2, 19.PubMedGoogle Scholar
  37. Fukunaga, K., Muller, D., Ohmitsu, M., Bako, E., DePaoli-Roach, A. A., & Miyamoto, E. (2000). Decreased protein phosphatase 2A activity in hippocampal long-term potentiation. Journal of Neurochemistry, 74, 807–817.PubMedCrossRefGoogle Scholar
  38. Gerkin, R. C., Lau, P.-M., Nauen, D. W., Wang, Y. T., & Bi, G.-Q. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of Neurophysiology, 97, 2851–2862.PubMedCrossRefGoogle Scholar
  39. Graupner, M., & Brunel, N. (2007). STDP in a bistable synapse model based on CaMKII and associated signalling pathways. PLoS Computational Biology, 3(11), e221.PubMedCrossRefGoogle Scholar
  40. Graupner, M., & Brunel, N. (2010). Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Frontiers in Computational Neuroscience, 4, 136.PubMedCrossRefGoogle Scholar
  41. Hanson, P. I., & Schulman, H. (1992). Neuronal Ca2+ / Calmodulin-dependent protein kinase. Annual Review of Biochemistry, 61, 559–601.PubMedCrossRefGoogle Scholar
  42. Harris, K. M., & Kater, S. B. (1994). Dendritic spines: cellular specialisations imparting both stability and flexibility to synaptic function. Annual Reviews in Neuroscience, 17, 341–371.CrossRefGoogle Scholar
  43. Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A., & Buzsaki, G. (2001). Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron, 32, 141–149.PubMedCrossRefGoogle Scholar
  44. Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.Google Scholar
  45. Jahr, C. E., & Stevens, C. F. (1990). A quantitative description of NMDA receptor-channel kinetic behaviour. Journal of Neuroscience, 10, 1830–1837.PubMedGoogle Scholar
  46. Johnston, D., Christie, B. R., Frick, A., Gray, R., Hoffman, D. A., Schexnayder, L. K., Watanabe, S., & Yuan, L.-L. (2003). Active dendrites, potassium channels and synaptic plasticity. Philosophical Transactions of the Royal Society B, 358, 667–674.CrossRefGoogle Scholar
  47. Kampa, B. M., Letzkus, J. J., & Stuart, G. J. (2007). Dendritic mechanisms controlling spike-timing dependent plasticity. Trends in Neuroscience, 30, 456–463.CrossRefGoogle Scholar
  48. Karmarkar, U. R., & Buonomano, D. V. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of Neurophysiology, 88, 507–513.PubMedGoogle Scholar
  49. Krug, M., Lossner, B., & Ott, T. (1984). Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Research Bulletins, 13, 39–42.CrossRefGoogle Scholar
  50. Larkum, M. E., Zhu, J. J., & Sakmann, B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. The Journal of Physiology, 533, 447–466.PubMedCrossRefGoogle Scholar
  51. Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368, 347–350.PubMedCrossRefGoogle Scholar
  52. Lazar, A., Pipa, G., & Triesch, J. (2009). SORN: a self-organizing recurrent neural network. Frontiers in Computational Neuroscience, 3, 23.PubMedGoogle Scholar
  53. Lee, H.-K., Barbarosie, M., Kameyama, K., Bear, M. F., & Huganir, R. L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405, 955–959.PubMedCrossRefGoogle Scholar
  54. Legenstein, R., & Maass, W. (2011). Branch-specific plasticity enables self-organisation of nonlinear computation in single neurons. Journal of Neuroscience, 31, 10787–10802.PubMedCrossRefGoogle Scholar
  55. Lisman, J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. PNAS, 86, 9574–9578.PubMedCrossRefGoogle Scholar
  56. Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20, 38–43.PubMedCrossRefGoogle Scholar
  57. Lisman, J., & Spruston, N. (2005). Postsynaptic depolarisation requirements for LTP and LTD: a critique of spike-timing dependent plasticity. Nature Neuroscience, 8, 839–841.PubMedGoogle Scholar
  58. Lomo, T., & Bliss, T. V. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232, 331–356.PubMedGoogle Scholar
  59. Losonczy, A., Makara, J. K., & Magee, J. C. (2008). Compartmentalised dendritic plasticity and input feature storage in neurons. Nature, 452, 436–441.PubMedCrossRefGoogle Scholar
  60. Magee, J. C., & Johnston, D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science, 275, 209–213.PubMedCrossRefGoogle Scholar
  61. Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron, 44, 5–21.PubMedCrossRefGoogle Scholar
  62. Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation—a decade of progress? Science, 285, 1870–1874.PubMedCrossRefGoogle Scholar
  63. Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T., Nicoll, R. A., & Waxham, M. N. (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature, 340, 554–557.PubMedCrossRefGoogle Scholar
  64. Malinow, R., Schulman, H., & Tsien, R. W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science, 245, 862–866.PubMedCrossRefGoogle Scholar
  65. Martin, S. J., Grimwood, P. D., & Morris, R. G. M. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649–711.PubMedCrossRefGoogle Scholar
  66. Meredith, R. M., Floyer-Lea, A. M., & Paulsen, O. (2003). Maturation of long-term potentiation induction rules in rodent hippocampus: role of GABAergic inhibition. Journal of Neuroscience, 23, 11142–11146.PubMedGoogle Scholar
  67. Mizuno, T., Kanazawa, I., & Sakurai, M. (2001). Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. European Journal of Neuroscience, 14, 701–708.PubMedCrossRefGoogle Scholar
  68. Morgan, D. O. (2007). The cell cycle: Principles of control. Sunderland: New Science Press.Google Scholar
  69. Mulkey, R. M., Herron, C. E., & Malenka, R. C. (1993). An essential role for protein phosphatases in hippocampal long-term depression. Science, 261, 1104–1107.CrossRefGoogle Scholar
  70. Nelson, S. B., & Turrigiano, G. G. (2008). Strength through diversity. Neuron, 60, 477–482.PubMedCrossRefGoogle Scholar
  71. Neves, G., Cooke, S. F., & Bliss, T. V. P. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience, 9, 65–75.PubMedCrossRefGoogle Scholar
  72. Nevian, T., & Sakmann, B. (2006). Spine Ca2+ signaling in spike-timing-dependent plasticity. Journal of Neuroscience, 26, 11001–11013.PubMedCrossRefGoogle Scholar
  73. Ngezahayo, A., Schachner, M., & Artola, A. (2000). Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. Journal of Neuroscience, 20, 2451–2458.PubMedGoogle Scholar
  74. Nguyen, P. V., Abel, T., & Kandel, E. R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science, 165, 1104–1107.CrossRefGoogle Scholar
  75. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M. M., & Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408, 584–588.PubMedCrossRefGoogle Scholar
  76. O’Connor, D. H., Wittenberg, G. M., & Wang, S. S. H. (2005a). Graded bidirectional synaptic plasticity is composed of switch-like unitary events. PNAS, 102, 9679–9684.PubMedCrossRefGoogle Scholar
  77. O’Connor, D. H., Wittenberg, G. M., & Wang, S. S. H. (2005b). Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. Journal of Neurophysiology, 94, 1565–1573.PubMedCrossRefGoogle Scholar
  78. Palmer, L. M., & Stuart, G. J. (2009). Membrane potential changes in dendritic spines during action potentials and synaptic input. Journal of Neuroscience, 29, 6897–6903.PubMedCrossRefGoogle Scholar
  79. Perez-Otano, I., & Ehlers, M. D. (2005). Homeostatic plasticity and NMDA receptor trafficking. Trends in Neurosciences, 28, 229–238.PubMedCrossRefGoogle Scholar
  80. Petersen, C. C. N., Malenka, R. C., Nicoll, R. A., & Hopfield, J. J. (1998). All-or-none potentiation at CA3-CA1 synapses. PNAS, 95, 4732–4737.PubMedCrossRefGoogle Scholar
  81. Pfister, J.-P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. Journal of Neuroscience, 26, 9673–9682.PubMedCrossRefGoogle Scholar
  82. Pi, H. J., & Lisman, J. E. (2008). Coupled phosphatase and kinase switches produce the tristability required for long-term potentiation and long-term depression. Journal of Neuroscience, 28, 13132–13138.PubMedCrossRefGoogle Scholar
  83. Pike, F. G., Meredith, R. M., Olding, A. W., & Paulsen, O. (1999). Postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. The Journal of Physiology, 518, 571–576.PubMedCrossRefGoogle Scholar
  84. Rackham, O. J. L., Tsaneva-Atanasova, K., Ganesh, A., & Mellor, J. R. (2010). A Ca2+-based computational model for NMDA receptor-dependent synaptic plasticity at individual post-synaptic spines in the hippocampus. Frontiers in Synaptic Neuroscience, 2, 31.PubMedGoogle Scholar
  85. Rodríguez-Moreno, A., & Paulsen, O. (2008). Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nature Neuroscience, 11, 744–745.PubMedCrossRefGoogle Scholar
  86. Rubin, J. E., Gerkin, R. C., Bi, G.-Q., & Chow, C. C. (2005). Calcium time course as a signal for spike-timing-dependent plasticity. Journal of Neurophysiology, 93, 2600–2613.PubMedCrossRefGoogle Scholar
  87. Sabatini, B. L., Oertner, T. G., & Svoboda, K. (2002). The life cycle of Ca2+ ions in dendritic spines. Neuron, 33, 439–452.PubMedCrossRefGoogle Scholar
  88. Shouval, H. Z., & Kalantzis, G. (2005). Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves. Journal of Neurophysiology, 93, 1069–1073.PubMedCrossRefGoogle Scholar
  89. Shouval, H. Z., Bear, M. F., & Cooper, L. N. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. PNAS, 99, 10831–11083.PubMedCrossRefGoogle Scholar
  90. Shouval, H. Z., Wang, S. S.-H., & Wittenberg, G. M. (2010). Spike timing dependent plasticity: a consequence of more fundamental learning rules. Frontiers in Computational Neuroscience, 4, 19.PubMedGoogle Scholar
  91. Sjostrom, P. J., & Nelson, S. B. (2002). Spike timing, calcium signals and synaptic plasticity. Current Opinion in Neurobiology, 12, 305–314.PubMedCrossRefGoogle Scholar
  92. Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron, 32, 1149–1164.PubMedCrossRefGoogle Scholar
  93. Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron, 39, 641–654.PubMedCrossRefGoogle Scholar
  94. Sjöström, P. J., Rancz, E. A., Roth, A., & Häusser, M. (2008). Dendritic excitability and synaptic plasticity. Physiological Reviews, 88, 769–840.PubMedCrossRefGoogle Scholar
  95. Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing dependent synaptic plasticity. Nature Neuroscience, 3, 919–926.PubMedCrossRefGoogle Scholar
  96. Stuart, G. J., & Sakmann, B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature, 367, 69–72.PubMedCrossRefGoogle Scholar
  97. Urakubo, H., Honda, M., Froemke, R. C., & Kuroda, S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike-timing dependent plasticity. Journal of Neuroscience, 28, 3310–3323.PubMedCrossRefGoogle Scholar
  98. Wang, H. X., Gerkin, R. C., Nauen, D. W., & Bi, G.-Q. (2005). Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neuroscience, 8, 187–193.PubMedCrossRefGoogle Scholar
  99. Watt, A. J., Sjostrom, P. J., Hausser, M., Nelson, S. B., & Turrigiano, G. G. (2004). A proportional but slower NMDA potentiation follows AMPA potentiation in LTP. Nature Neuroscience, 7, 518–524.PubMedCrossRefGoogle Scholar
  100. Whitlock, J. R., Heynen, A. J., Shuler, M. G., & Bear, M. F. (2006). Learning induces long-term potentiation in the hippocampus. Science, 313, 1093–1097.PubMedCrossRefGoogle Scholar
  101. Wittenberg, G. M., & Wang, S.-S. H. (2006). Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. Journal of Neuroscience, 26, 6610–6617.PubMedCrossRefGoogle Scholar
  102. Yang, S. N., Tang, Y. G., & Zucker, R. (1999). Selective induction of LTP and LTD by post-synaptic [Ca2+]i elevation. Journal of Neurophysiology, 81, 781–787.PubMedGoogle Scholar
  103. Zhabotinsky, A. M. (2000). Bistability in the Ca2+ / calmodulin-dependent protein kinase-phosphatase system. Biophysical Journal, 79, 2211–2221.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.UCL Institute of Cognitive NeuroscienceLondonUK
  2. 2.UCL Institute of NeurologyLondonUK
  3. 3.Department of ComputingUniversity of SurreyGuildfordUK

Personalised recommendations