Journal of Computational Neuroscience

, Volume 33, Issue 2, pp 227–255 | Cite as

Uncovering spatial topology represented by rat hippocampal population neuronal codes

  • Zhe Chen
  • Fabian Kloosterman
  • Emery N. Brown
  • Matthew A. Wilson
Article

Abstract

Hippocampal population codes play an important role in representation of spatial environment and spatial navigation. Uncovering the internal representation of hippocampal population codes will help understand neural mechanisms of the hippocampus. For instance, uncovering the patterns represented by rat hippocampus (CA1) pyramidal cells during periods of either navigation or sleep has been an active research topic over the past decades. However, previous approaches to analyze or decode firing patterns of population neurons all assume the knowledge of the place fields, which are estimated from training data a priori. The question still remains unclear how can we extract information from population neuronal responses either without a priori knowledge or in the presence of finite sampling constraint. Finding the answer to this question would leverage our ability to examine the population neuronal codes under different experimental conditions. Using rat hippocampus as a model system, we attempt to uncover the hidden “spatial topology” represented by the hippocampal population codes. We develop a hidden Markov model (HMM) and a variational Bayesian (VB) inference algorithm to achieve this computational goal, and we apply the analysis to extensive simulation and experimental data. Our empirical results show promising direction for discovering structural patterns of ensemble spike activity during periods of active navigation. This study would also provide useful insights for future exploratory data analysis of population neuronal codes during periods of sleep.

Keywords

Hidden Markov model Expectation-maximization Variational Bayesian inference Place cells Population codes Spatial topology Force-based algorithm 

References

  1. Amari, S., Ozeki, T., & Park, H-Y. (2003). Learning and inference in hierarchical models with singularities. Systems and Computers in Japan, 34(7), 34–42.CrossRefGoogle Scholar
  2. Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41(1), 164–171.CrossRefGoogle Scholar
  3. Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. PhD. Thesis, Gatsby Computational Neuroscience Unit, University College London.Google Scholar
  4. Beal, M. J., Ghahramani, Z., & Rasmussen, C. E. (2002). The infinite hidden Markov model. Advances in neural information processing systems (Vol. 14). Cambridge, MA: MIT Press.Google Scholar
  5. Bellman, R. (1957). Dynamic programming. Boston: Princeton University Press.Google Scholar
  6. Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.Google Scholar
  7. Borg, I., & Groenen, P. (2005). Modern multidimensional scaling: Theory and applications (2nd ed.). New York: Springer.Google Scholar
  8. Brand, M. (1999). Structure learning in conditional probability models via an entropic prior and parameter extinction. Neural Computation, 11, 1155–1182.CrossRefGoogle Scholar
  9. Brand, M., & Ketnaker, V. (2000). Discovery and segmentation of activities in video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 844–851.CrossRefGoogle Scholar
  10. Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., & Wilson, M. A. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18, 7411–7425.PubMedGoogle Scholar
  11. Buzsaki, G. (2006). Rhythms of the brain. London, UK: Oxford University Press.CrossRefGoogle Scholar
  12. Cappé, O., Moulines, E., & Ryden, T. (2005). Inference in hidden Markov models. New York: Springer.Google Scholar
  13. Chen, Z., Vijayan, S., Barbieri, R., Wilson, M. A., & Brown, E. N. (2009). Discrete- and continuous-time probabilistic models and algorithms for inferring neuronal UP and DOWN states. Neural Computation, 21(7), 1797–1862.PubMedCrossRefGoogle Scholar
  14. Chen, Z., Putrino, D., Ghosh, S., Barbieri, R. & Brown, E. N. (2011). Statistical inference for assessing neuronal interactions and functional connectivity with sparse spiking data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2), 121–135.PubMedCrossRefGoogle Scholar
  15. Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling. London, UK: Chapman and Hall.Google Scholar
  16. Curto, C., & Itskov, V. (2008). Cell groups reveal structure of stimulus space. PLoS Computational Biology, 4, e1000205.PubMedCrossRefGoogle Scholar
  17. Dabaghian, Y., Cohn, A. G., & Frank, L. (2008). Topological coding in hippocampus. Online paper. arXiva:q-bio/0702052v1.
  18. Darmanjian, S., & Principe, J. C. (2009). Spatial-temporal clustering of neural data using linked-mixtures of hidden Markov models. EURASIP Journal on Advances in Signal Processing, 2009, Article ID 892461.Google Scholar
  19. Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63, 497–507.PubMedCrossRefGoogle Scholar
  20. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1–38.Google Scholar
  21. Diba, K., & Buzsaki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 10, 1241–1242.PubMedCrossRefGoogle Scholar
  22. Dragoi, G., & Tonegawa, S. (2011). Preplay of future place cell sequences by hippocampal cellular assemblies. Nature, 469, 397–401.PubMedCrossRefGoogle Scholar
  23. Frank, L. M., Stanley, G. B., & Brown, E. N. (2004) Hippocampal plasticity across multiple days of exposure to novel environments. Journal of Neuroscience, 24, 7681–7689.PubMedCrossRefGoogle Scholar
  24. Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440, 680–683.PubMedCrossRefGoogle Scholar
  25. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). London, UK: Chapman & Hall/CRC.Google Scholar
  26. Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.) (1995). Markov chain Monte Carlo in practice. London, UK: Chapman & Hall/CRC.Google Scholar
  27. Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424, 552–556.PubMedCrossRefGoogle Scholar
  28. Herbst, J. A., Gammeter, S., Ferrero, D., & Hahnloser, R. H. R. (2008). Spike sorting with hidden Markov models. Journal of Neuroscience Methods, 174, 126–134.PubMedCrossRefGoogle Scholar
  29. Jackson, J., & Redish, A. D. (2007). Network dynamics of hippocampal cell-assembliesresemble multiple spatial maps within single tasks. Hippocampus, 17, 1209–1229.PubMedCrossRefGoogle Scholar
  30. Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100–107.PubMedCrossRefGoogle Scholar
  31. Ji, S., Krishnapuram, B., & Carin, L. (2006). Variational Bayes for continuous hidden Markov models and its application to active learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 522–532.PubMedCrossRefGoogle Scholar
  32. Jones, L. M., Fontanini, A., Sadacca, B. F., Miller, P., & Katz, D. B. (2007). Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proceedings of the National Academy of Sciences, USA, 104, 18772–18777.CrossRefGoogle Scholar
  33. Karlsson, M. P., & Frank, L. M. (2009). Awake replay of remote experiences in the hippocampus. Nature Neuroscience, 12, 913–918.PubMedCrossRefGoogle Scholar
  34. Katahira, K., Nishikawa, J., Okanoya, K., & Okada, M. (2010). Extracting state transition dynamics from multiple spike trains using hidden Markov models with correlated Poisson distribution. Neural Computation, 22, 2369–2389.PubMedCrossRefGoogle Scholar
  35. Katahira, K., Watanabe, K., & Okada, M. (2008). Deterministic annealing variant of variational Bayes method. Journal of Physics: Conference Series, 95, 012015.CrossRefGoogle Scholar
  36. Kemere, C., Santhanam, G., Yu, B. M., Afshar, A., Ryu, S. I., Meng, T. H., et al. (2008). Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. Journal of Neurophysiology, 100(4), 2441–2452.PubMedCrossRefGoogle Scholar
  37. Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36, 1183–1194.PubMedCrossRefGoogle Scholar
  38. Lever, C., Wills, T., Cacucci, F., Burgess, N., & O’Keefe, J. (2002). Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature, 416, 90–94.PubMedCrossRefGoogle Scholar
  39. Louie, K., & Wilson, M. A. (2001). Temporally structured REM sleep replay of awake hippocampal ensemble activity. Neuron, 29, 145–156.PubMedCrossRefGoogle Scholar
  40. Mackay, D. J. C. (1997). Ensemble learning for hidden Markov models. Technical Report, Cavendish Laboratory, Cambridge University, UK.Google Scholar
  41. MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge, UK: Cambridge University Press.Google Scholar
  42. McGrory, C. A., & Titterington, D. M. (2009). Variational Bayesian analysis for hidden Markov models. Australian & New Zealand Journal of Statistics, 51(2), 227–244.CrossRefGoogle Scholar
  43. McLachlan, G. J., & Krishnan, T. (2008). The EM algorithm and extensions (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  44. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., & Moser, M. B. (2006). Path integration and the neural basis of the ‘cognitive map’. Nature Reviews. Neuroscience, 7, 663–678.PubMedCrossRefGoogle Scholar
  45. O’Keefe, J., & Nadel, N. (1978). The hippocampus as a cognitive map. New York: Oxford University Press.Google Scholar
  46. Pawitan, Y. (2001). In all likelihood: Statistical modelling and inference using likelihood. New York: Oxford University Press.Google Scholar
  47. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.CrossRefGoogle Scholar
  48. Robert, C. P. (2001). The Bayesian choice–A decision-theoretic motivation (2nd ed.). New York: Springer.Google Scholar
  49. Rydén, T. (2008). EM versus Markov chain Monte Carlo for estimation of hidden Markov models: A computational perspective. Bayesian Analysis, 3(4), 659–688.Google Scholar
  50. Scott, S. L. (2002). Bayesian methods for hidden Markov models: Recursive computing in the 21st century. Journal of the American Statistical Association, 97, 337–351.CrossRefGoogle Scholar
  51. Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271, 1870–1873.PubMedCrossRefGoogle Scholar
  52. Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101, 1566–1581.CrossRefGoogle Scholar
  53. Tollis, I. G., di Battista, G., Eades, P., & Tamassia, R. (1999). Graph drawing: Algorithms for the visualization of graphs. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  54. Truccolo, W., Eden, U. T., Fellow, M., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and covariate effects. Journal of Neurophysiology, 93, 1074–1089.PubMedCrossRefGoogle Scholar
  55. van Gael, J., Saatci, Y., Teh, Y. W., & Ghahramani, Z. (2008). Beam sampling for the infinite hidden Markov model. In Proc. 25th int. conf. machine learning, Helsinki, Finland.Google Scholar
  56. Viterbi, J. (1967). Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Transactions on Information Theory, 13, 260–269.CrossRefGoogle Scholar
  57. Watanabe, S. (2009). Algebraic geometry and statistical learning theory. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  58. Wills, T., Lever, C., Cacucci, F., Burgess, N., & O’Keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science, 308, 873–876.PubMedCrossRefGoogle Scholar
  59. Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261, 1055–1058.PubMedCrossRefGoogle Scholar
  60. Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676–679.PubMedCrossRefGoogle Scholar
  61. Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron, 27, 623–633.PubMedCrossRefGoogle Scholar
  62. Wu, W., Chen, Z., Gao, S., & Brown, E. N. (2011). A hierarchical Bayesian approach for learning spatio-temporal decomposition of multichannel EEG. NeuroImage, 56(4), 1929–1945.PubMedCrossRefGoogle Scholar
  63. Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population codes. Neural Computation, 10, 403–430.PubMedCrossRefGoogle Scholar
  64. Zhang, K., Ginzburg, I., McNaughton, B. L., & Sejnowski, T. J. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Zhe Chen
    • 1
    • 2
  • Fabian Kloosterman
    • 3
  • Emery N. Brown
    • 1
    • 4
  • Matthew A. Wilson
    • 3
  1. 1.Neuroscience Statistics Research Lab, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Brain and Cognitive Sciences and Picower Institute for Learning and MemoryMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Brain and Cognitive Sciences and Harvard-MIT Division of Health and Science TechnologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations