Journal of Computational Neuroscience

, Volume 33, Issue 1, pp 141–150 | Cite as

Phase precession through acceleration of local theta rhythm: a biophysical model for the interaction between place cells and local inhibitory neurons

  • Luísa Castro
  • Paulo AguiarEmail author


Phase precession is one of the most well known examples within the temporal coding hypothesis. Here we present a biophysical spiking model for phase precession in hippocampal CA1 which focuses on the interaction between place cells and local inhibitory interneurons. The model’s functional block is composed of a place cell (PC) connected with a local inhibitory cell (IC) which is modulated by the population theta rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs are both theta modulated and space modulated. The dynamics of the two neuron types are described by integrate-and-fire models with conductance synapses, and the EC inputs are described using non-homogeneous Poisson processes. Phase precession in our model is caused by increased drive to specific PC/IC pairs when the animal is in their place field. The excitation increases the IC’s firing rate, and this modulates the PC’s firing rate such that both cells precess relative to theta. Our model implies that phase coding in place cells may not be independent from rate coding. The absence of restrictive connectivity constraints in this model predicts the generation of phase precession in any network with similar architecture and subject to a clocking rhythm, independently of the involvement in spatial tasks.


Phase precession Theta rhythm Spiking model Theta acceleration Local interneurons Hippocampus 



Research funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2011. Luísa Castro was supported by the grant SFRH/BD/46329/2008 from FCT. The authors would like to thank the reviewers for important suggestions.


  1. Amaral, D., & Lavenex, P. (2006). Hippocampal neuroanatomy. In P. Andersen, R. Morris, D. Amaral, T. Bliss, & J. O’Keefe (Eds.), The hippocampus book. New York: Oxford University Press.Google Scholar
  2. Baker, J., & Olds, J. (2007). Theta phase precession emerges from a hybrid computational model of a CA3 place cell. Cognitive Neurodynamics, 1(3), 237–248. doi: 10.1007/s11571-007-9018-9.PubMedCrossRefGoogle Scholar
  3. Bendels, M., & Leibold, C. (2007). Generation of theta oscillations by weakly coupled neural oscillators in the presence of noise. Journal of Computational Neuroscience, 22(2), 173–189. doi: 10.1007/s10827-006-0006-6.PubMedCrossRefGoogle Scholar
  4. Bose, A., Booth, V., & Recce, M. (2000). A temporal mechanism for generating the phase precession of hippocampal place cells. Journal of Computational Neuroscience, 9(1), 5–30. doi: 10.1023/a:1008976210366.PubMedCrossRefGoogle Scholar
  5. Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325–340. doi: 10.1016/S0896-6273(02)00586-X.PubMedCrossRefGoogle Scholar
  6. Ego-Stengel, V., & Wilson, M. A. (2007). Spatial selectivity and theta phase precession in CA1 interneurons. Hippocampus, 17(2), 161–174. doi: 10.1002/hipo.20253.PubMedCrossRefGoogle Scholar
  7. Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470. doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I.PubMedCrossRefGoogle Scholar
  8. Geisler, C., Diba, K., Pastalkova, E., Mizuseki, K., Royer, S., & Buzsáki, G. (2010). Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus. Proceedings of the National Academy of Sciences, 107(17), 7957–7962. doi: 10.1073/pnas.0912478107.CrossRefGoogle Scholar
  9. Hafting, T., Fyhn, M., Bonnevie, T., Moser, M.-B., & Moser, E. I. (2008). Hippocampus-independent phase precession in entorhinal grid cells. [doi:10.1038/nature06957]. Nature, 453(7199), 1248–1252,
  10. Halasy, K., Buhl, E. H., Lorinczi, Z., Tamas, G., & Somogyi, P. (1996). Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus. Hippocampus, 6(3), 306–329. doi: 10.1002/(SICI)1098-1063(1996)6:3<306::AID-HIPO8>3.0.CO;2-K.PubMedCrossRefGoogle Scholar
  11. Harris, K. D., Henze, D. A., Hirase, H., Leinekugel, X., Dragoi, G., Czurko, A., et al. (2002). Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. [doi: 10.1038/nature00808]. Nature, 417(6890), 738–741, Scholar
  12. Harvey, C. D., Collman, F., Dombeck, D. A., & Tank, D. W. (2009). Intracellular dynamics of hippocampal place cells during virtual navigation. Nature, 461(7266), 941–946. doi: 10.1038/nature08499.PubMedCrossRefGoogle Scholar
  13. Hasselmo, M. E., Brandon, M. P., Yoshida, M., Giocomo, L. M., Heys, J. G., Fransen, E., et al. (2009). A phase code for memory could arise from circuit mechanisms in entorhinal cortex. Neural Networks, 22(8), 1129–1138. doi: 10.1016/j.neunet.2009.07.012.PubMedCrossRefGoogle Scholar
  14. Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: A database to support computational neuroscience. [Research support, U.S. Gov’t, P.H.S.]. Journal of Computational Neuroscience, 17(1), 7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e.PubMedCrossRefGoogle Scholar
  15. Huxter, J., Burgess, N., & O’Keefe, J. (2003). Independent rate and temporal coding in hippocampal pyramidal cells. [doi: 10.1038/nature02058]. Nature, 425(6960), 828-832,
  16. Kamondi, A., Acsády, L., Wang, X. J., & Buzsáki, G. (1998). Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession of action potentials. Hippocampus, 8(3), 244–261. doi: citeulike-article-id:436284.PubMedCrossRefGoogle Scholar
  17. Lengyel, M., Szatmáry, Z., & Érdi, P. (2003). Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus, 13(6), 700–714. doi: 10.1002/hipo.10116.PubMedCrossRefGoogle Scholar
  18. Loewenstein, Y., Yarom, Y., & Sompolinsky, H. (2001). The generation of oscillations in networks of electrically coupled cells. Proceedings of the National Academy of Sciences, 98(14), 8095–8100. doi: 10.1073/pnas.131116898.CrossRefGoogle Scholar
  19. Mehta, M. R., Lee, A. K., & Wilson, M. A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. [10.1038/nature00807]. Nature, 417(6890), 741–746.Google Scholar
  20. O’Keefe, J., & Burgess, N. (2005). Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells. Hippocampus, 15(7), 853–866.PubMedCrossRefGoogle Scholar
  21. O’Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3(3), 317–330. doi: 10.1002/hipo.450030307.PubMedCrossRefGoogle Scholar
  22. Ross, S. M. (2002). Simulation (3rd ed.). San Diego: Academic.Google Scholar
  23. Shepherd, G. M. (1998). The synaptic organization of the brain (4th ed.). New York: Oxford University Press.Google Scholar
  24. Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149–172. doi: 10.1002/(sici)1098-1063(1996)6:2<149::aid-hipo6>;2-k.PubMedCrossRefGoogle Scholar
  25. Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus, 6, 271–280.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.Centro de Matemática da Universidade do PortoPortoPortugal

Personalised recommendations