Advertisement

Journal of Computational Neuroscience

, Volume 33, Issue 1, pp 123–139 | Cite as

Spatiotemporal maps of CaMKII in dendritic spines

  • Shahid Khan
  • Thomas S. Reese
  • Nasir Rajpoot
  • Ayisha Shabbir
Article

Abstract

The calcium calmodulin dependent kinase (CaMKII) is important for long-term potentiation at dendritic spines. Photo-activatable GFP (PaGFP) – CaMKII fusions were used to map CaMKII movements between and within spines in dissociated hippocampal neurons. Photo-activated PaGFP (GFP*) generated in the shaft spread uniformly, but was retained for about 1 s in spines. The differential localization of GFP*-CaMKII isoforms was visualized with hundred nanometer precision frame to frame using de-noising algorithms. GFP*-CaMKIIα localized to the tips of mushroom spines. The spatiotemporal profiles of native and kinase defective GFP*-CaMKIIβ, differed markedly from GFP*-CaMKIIα and mutant GFP*-CaMKIIβ lacking the association domain. CaMKIIβ bound to cortical actin in the dendrite and the stable actin network in spine bodies. Glutamate produced a transiently localized GFP*-CaMKIIα fraction and a soluble GFP*-CaMKIIβ fraction in spine bodies. Single molecule simulations of the interplay between diffusion and biochemistry of GFP* species were guided by the spatiotemporal maps and set limits on binding parameters. They highlighted the role of spine morphology in modulating bound CaMKII lifetimes. The long residence times of GFP*-CaMKIIβ relative to GFP*-CaMKIIα followed as consequence of more binding sites on the actin cytoskeleton than the post-synaptic density. These factors combined to retain CaMKII for tens of seconds, sufficient to outlast the calcium transients triggered by glutamate, without invoking complex biochemistry.

Keywords

Smoldyn Actin cytoskeleton Photo-activation Multi-color confocal microscopy Wavelet transform Cultured hippocampal neurons 

Notes

Acknowledgments

We thank Dr Steven Andrews for advice and discussion regarding Smoldyn and Dr Ayse Dosemici for comments on the manuscript. Ayisha Shabbir was supported by start-up funds from the LUMS School of Science & Engineering (to S.K).

Supplementary material

Movie 1

(PAalpha.mpg): Movie of de-noised image sequence showing sequestration of GFP*-CaMKIIa to spine tip (MPG 5488 kb)

Movie 2

(PAbetaK.mpg): Movie of de-noised image sequence showing sequestration of GFP*-CaMKIIb to spine body. (MPG 3786 kb)

Movie 3

(PAgfp.mpg): Movie of Smoldyn simulation demonstrating trapping of GFP* in mushroom spine. (MPG 4474 kb)

10827_2011_377_MOESM4_ESM.txt (4 kb)
Script 1 (spine-PAgfpS1D80.txt): Example Smoldyn script for computation of GFP*-CaMKIIa residence times. (TXT 3 kb)
10827_2011_377_MOESM5_ESM.pdf (44 kb)
Script 2 (spine-PAgfpS2.txt): Example Smoldyn script for computation of GFP*-CaMKIIb residence times. Surface and solution reactions with the dendritic cortical actin and spine actin cytoskeleton are included to the reactions in Script 1. The dendrite geometry is different in the two scripts to illustrate virtual cell set-up (PDF 44.3 kb)

References

  1. Andrews, S. S., Addy, N. J., Brent, R., & Arkin, A. P. (2010). Detailed simulations of cell biology with Smoldyn 2.1. PLoS Computational Biology, 6, e1000705.PubMedCrossRefGoogle Scholar
  2. Bayer, K. U., LeBel, E., McDonald, G. L., O’Leary, H., Schulman, H., & De Koninck, P. (2006). Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. Journal of Neuroscience, 26, 1164–1174.PubMedCrossRefGoogle Scholar
  3. Bloodgood, B. L., & Sabatini, B. L. (2005). Neuronal activity regulates diffusion across the neck of dendritic spines. Science, 310, 866–869.PubMedCrossRefGoogle Scholar
  4. Bloodgood, B. L., & Sabatini, B. L. (2007). Ca(2+) signaling in dendritic spines. Current Opinion in Neurobiology, 17, 345–351.PubMedCrossRefGoogle Scholar
  5. Boulanger, J., Kervrann, C., Bouthemy, P., Elbau, P., Sibarita, J. B., & Salamero, J. (2010). Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Transactions on Medical Imaging, 29, 442–454.PubMedCrossRefGoogle Scholar
  6. Bourne, J., & Harris, K. M. (2007). Do thin spines learn to be mushroom spines that remember? Current Opinion in Neurobiology, 17, 381–386.PubMedCrossRefGoogle Scholar
  7. Bourne, J. N., & Harris, K. M. (2008). Balancing structure and function at hippocampal dendritic spines. Annual Review of Neuroscience, 31, 47–67.PubMedCrossRefGoogle Scholar
  8. Byrne, M.J., Waxham, M.N., Kubota, Y., (2011). The impacts of geometry and binding on CaMKII diffusion and retention in dendritic spines. Journal of Computational Neuroscience.Google Scholar
  9. Cingolani, L. A., & Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nature Reviews. Neuroscience, 9, 344–356.PubMedCrossRefGoogle Scholar
  10. Collins, T. J. (2007). ImageJ for microscopy. Biotechniques, 43, 25–30.PubMedCrossRefGoogle Scholar
  11. De Decker, A., Lee, J. A., & Verleysen, M. (2010). A principled approach to image denosing with similarity kernels involving patches. Neurocomputing, 73, 1198–1209.Google Scholar
  12. Denk, W., Yuste, R., Svoboda, K., & Tank, D. W. (1996). Imaging calcium dynamics in dendritic spines. Current Opinion in Neurobiology, 6, 372–378.PubMedCrossRefGoogle Scholar
  13. Grant, P. A., Best, S. L., Sanmugalingam, N., Alessio, R., Jama, A. M., & Torok, K. (2008). A two-state model for Ca2+/CaM-dependent protein kinase II (alphaCaMKII) in response to persistent Ca2+ stimulation in hippocampal neurons. Cell Calcium, 44, 465–478.PubMedCrossRefGoogle Scholar
  14. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C., & Kasai, H. (2008). The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron, 57, 719–729.PubMedCrossRefGoogle Scholar
  15. Huang, B., Bates, M., & Zhuang, X. (2009). Super-resolution fluorescence microscopy. Annual Review of Biochemistry, 78, 993–1016.PubMedCrossRefGoogle Scholar
  16. Hudmon, A., Lebel, E., Roy, H., Sik, A., Schulman, H., Waxham, M. N., & De Koninck, P. (2005). A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. Journal of Neuroscience, 25, 6971–6983.PubMedCrossRefGoogle Scholar
  17. Kaech, S., Brinkhaus, H., & Matus, A. (1999). Volatile anesthetics block actin-based motility in dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 96, 10433–10437.PubMedCrossRefGoogle Scholar
  18. Kaech, S., Parmar, H., Roelandse, M., Bornmann, C., & Matus, A. (2001). Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites. Proceedings of the National Academy of Sciences of the United States of America, 98, 7086–7092.PubMedCrossRefGoogle Scholar
  19. Kanaseki, T., Ikeuchi, Y., Sugiura, H., & Yamauchi, T. (1991). Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. The Journal of Cell Biology, 115, 1049–1060.PubMedCrossRefGoogle Scholar
  20. Khan, S., Zou, Y., Amjad, A., Gardezi, A., Smith, C. L., Winters, C., & Reese, T. S. (2011). Sequestration of CaMKII in dendritic spines in silico. Journal of Computational Neuroscience, 31, 581–594.PubMedCrossRefGoogle Scholar
  21. Kolodziej, S. J., Hudmon, A., Waxham, M. N., & Stoops, J. K. (2000). Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIalpha and truncated CaM kinase IIalpha reveal a unique organization for its structural core and functional domains. Journal of Biological Chemistry, 275, 14354–14359.PubMedCrossRefGoogle Scholar
  22. Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M., & Yasuda, R. (2009). Activation of CaMKII in single dendritic spines during long-term potentiation. Nature, 458, 299–304.PubMedCrossRefGoogle Scholar
  23. Lippincott-Schwartz, J., Altan-Bonnet, N., Patterson, G.H., (2003). Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biology Suppl, S7–14.Google Scholar
  24. Lisman, J. E., Raghavachari, S., & Tsien, R. W. (2007). The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nature Reviews. Neuroscience, 8, 597–609.PubMedCrossRefGoogle Scholar
  25. Noguchi, J., Matsuzaki, M., Ellis-Davies, G. C., & Kasai, H. (2005). Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron, 46, 609–622.PubMedCrossRefGoogle Scholar
  26. Northrup, S. H., & Erickson, H. P. (1992). Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proceedings of the National Academy of Sciences of the United States of America, 89, 3338–3342.PubMedCrossRefGoogle Scholar
  27. Okabe, S. (2007). Molecular anatomy of the postsynaptic density. Molecular and Cellular Neuroscience, 34, 503–518.PubMedCrossRefGoogle Scholar
  28. Okamoto, K., Narayanan, R., Lee, S. H., Murata, K., & Hayashi, Y. (2007). The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proceedings of the National Academy of Sciences of the United States of America, 104, 6418–6423.PubMedCrossRefGoogle Scholar
  29. Okamoto, K., Bosch, M., & Hayashi, Y. (2009). The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiology (Bethesda, Md.), 24, 357–366.CrossRefGoogle Scholar
  30. O’Leary, H., Lasda, E., & Bayer, K. U. (2006). CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing. Molecular Biology of the Cell, 17, 4656–4665.PubMedCrossRefGoogle Scholar
  31. Otmakhov, N., Tao-Cheng, J. H., Carpenter, S., Asrican, B., Dosemeci, A., Reese, T. S., & Lisman, J. (2004). Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. Journal of Neuroscience, 24, 9324–9331.PubMedCrossRefGoogle Scholar
  32. Ouyang, Y., Wong, M., Capani, F., Rensing, N., Lee, C. S., Liu, Q., Neusch, C., Martone, M. E., Wu, J. Y., Yamada, K., Ellisman, M. H., & Choi, D. W. (2005). Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. The European Journal of Neuroscience, 22, 2995–3005.PubMedCrossRefGoogle Scholar
  33. Patterson, G. H., & Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science, 297, 1873–1877.PubMedCrossRefGoogle Scholar
  34. Pi, H. J., Otmakhov, N., El Gaamouch, F., Lemelin, D., De Koninck, P., & Lisman, J. (2010). CaMKII control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. Proceedings of the National Academy of Sciences of the United States of America, 107, 14437–14442.PubMedCrossRefGoogle Scholar
  35. Rajpoot, N. M., Wilson, R. G., Meyer, F. G., & Coifman, R. R. (2003). Adaptive wavelet packet basis selection for zerotree image coding. IEEE Transactions on Image Processing, 12, 1460–1472.PubMedCrossRefGoogle Scholar
  36. Rajpoot, N. M., Yao, Z., & Wilson, R. G. (2004). Adaptive wavelet restoration of noisy video sequenes. Proceedings of the International Conference Image Processing, 2, 957–960.Google Scholar
  37. Sanabria, H., Digman, M. A., Gratton, E., & Waxham, M. N. (2008). Spatial diffusivity and availability of intracellular calmodulin. Biophysical Journal, 95, 6002–6015.Google Scholar
  38. Sanabria, H., Swulius, M. T., Kolodziej, S. J., Liu, J., & Waxham, M. N. (2009). {beta}CaMKII regulates actin assembly and structure. Journal of Biological Chemistry, 284, 9770–9780.PubMedCrossRefGoogle Scholar
  39. Schaus, T. E., Taylor, E. W., & Borisy, G. G. (2007). Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model. Proceedings of the National Academy of Sciences of the United States of America, 104, 7086–7091.PubMedCrossRefGoogle Scholar
  40. Sharma, K., Fong, D. K., & Craig, A. M. (2006). Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Molecular and Cellular Neuroscience, 31, 702–712.PubMedCrossRefGoogle Scholar
  41. Shen, K., & Meyer, T. (1998). In vivo and in vitro characterization of the sequence requirement for oligomer formation of Ca2+/calmodulin-dependent protein kinase IIalpha. Journal of Neurochemistry, 70, 96–104.PubMedCrossRefGoogle Scholar
  42. Shen, K., & Meyer, T. (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science, 284, 162–166.PubMedCrossRefGoogle Scholar
  43. Shen, K., Teruel, M. N., Subramanian, K., & Meyer, T. (1998). CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron, 21, 593–606.PubMedCrossRefGoogle Scholar
  44. Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., & Meyer, T. (2000). Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nature Neuroscience, 3, 881–886.PubMedCrossRefGoogle Scholar
  45. Sheng, M., & Hoogenraad, C. C. (2007). The postsynaptic architecture of excitatory synapses: a more quantitative view. Annual Review of Biochemistry, 76, 823–847.PubMedCrossRefGoogle Scholar
  46. Shroff, H., Galbraith, C. G., Galbraith, J. A., & Betzig, E. (2008). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nature Methods, 5, 417–423.PubMedCrossRefGoogle Scholar
  47. Yang, L., Parton, R., Ball, G., Qiu, Z., Greenaway, A. H., Davis, I., & Lu, W. (2010). An adaptive non-local means filter for denoising live-cell images and improving particle detection. Journal of Structural Biology, 172, 233–243.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shahid Khan
    • 1
    • 2
    • 4
  • Thomas S. Reese
    • 1
  • Nasir Rajpoot
    • 3
    • 4
  • Ayisha Shabbir
    • 4
  1. 1.Laboratory of NeurobiologyNational Institute of Neurological Disorders & Stroke, National Institutes of HealthBethesdaUSA
  2. 2.Molecular Biology ConsortiumChicagoUSA
  3. 3.Computational Biology and Bio-imaging Group, Department of Computer ScienceUniversity of WarwickCoventryUK
  4. 4.LUMS-School of Science & Engineering, Sector U, DHALahorePakistan

Personalised recommendations