Journal of Computational Neuroscience

, Volume 33, Issue 1, pp 97–121 | Cite as

Modeling the impact of common noise inputs on the network activity of retinal ganglion cells

  • Michael Vidne
  • Yashar Ahmadian
  • Jonathon Shlens
  • Jonathan W. Pillow
  • Jayant Kulkarni
  • Alan M. Litke
  • E. J. Chichilnisky
  • Eero Simoncelli
  • Liam Paninski
Article

Abstract

Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations.

Keywords

Retina Generalized linear model State-space model Multielectrode Recording Random-effects model 

References

  1. Agresti, A. (2002). Categorical data analysis. In Wiley series in probability and mathematical statistics.Google Scholar
  2. Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009). A decoder-based spike train metric for analyzing the neural code in the retina. In COSYNE09.Google Scholar
  3. Ahmadian, Y., Pillow, J. W., & Paninski, L. (2011). Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural Computation, 23, 46–96.PubMedCrossRefGoogle Scholar
  4. Arnett, D. (1978). Statistical dependence between neighboring retinal ganglion cells in goldfish. Experimental Brain Research, 32(1), 49–53.CrossRefGoogle Scholar
  5. Bickel, P., & Doksum, K. (2001). Mathematical statistics: Basic ideas and selected topics. Prentice Hall.Google Scholar
  6. Brivanlou, I., Warland, D., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–539.PubMedCrossRefGoogle Scholar
  7. Brody, C. (1999). Correlations without synchrony. Neural Computation, 11, 1537–1551.PubMedCrossRefGoogle Scholar
  8. Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding. Nature, 468(7326), 964–967.PubMedCrossRefGoogle Scholar
  9. Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265–275.PubMedCrossRefGoogle Scholar
  10. Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences, 106(33), 14058.CrossRefGoogle Scholar
  11. Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex. Nature, 423, 283–288.PubMedCrossRefGoogle Scholar
  12. Dacey, D., & Brace, S. (1992). A coupled network for parasol but not midget ganglion cells in the primate retina. Visual Neuroscience, 9(3–4), 279–290.PubMedCrossRefGoogle Scholar
  13. DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920.PubMedGoogle Scholar
  14. Dombeck, D., Khabbaz, A., Collman, F., Adelman, T., & Tank, D. (2007). Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron, 56(1), 43–57.PubMedCrossRefGoogle Scholar
  15. Dorn, J. D., & Ringach, D. L. (2003). Estimating membrane voltage correlations from extracellular spike trains. Journal of Neurophysiology, 89(4), 2271–2278.PubMedCrossRefGoogle Scholar
  16. Fahrmeir, L., & Kaufmann, H. (1991). On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression. Metrika, 38, 37–60.CrossRefGoogle Scholar
  17. Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling based on generalized linear models. Springer.Google Scholar
  18. Field, G., Gauthier, J., Sher, A., Greschner, M., Machado, T., Jepson, L., et al. (2010). Mapping a neural circuit: A complete input-output diagram in the primate retina. Nature, 467, 673–677.PubMedCrossRefGoogle Scholar
  19. Frechette, E., Sher, A., Grivich, M., Petrusca, D., Litke, A., & Chichilnisky, E. (2005). Fidelity of the ensemble code for visual motion in primate retina. Journal of Neurophysiology, 94(1), 119.PubMedCrossRefGoogle Scholar
  20. Gauthier, J., Field, G., Sher, A., Greschner, M., Shlens, J., Litke, A., et al. (2009). Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biology, 7(4), e1000,063.CrossRefGoogle Scholar
  21. Greschner, M., Shlens, J., Bakolitsa, C., Field, G., Gauthier, J., Jepson, L., et al. (2011). Correlated firing among major ganglion cell types in primate retina. The Journal of Physiology, 589(1), 75.PubMedCrossRefGoogle Scholar
  22. Gutnisky, D., & Josic, K. (2010). Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process. Journal of Neurophysiology, 103(5), 2912.PubMedCrossRefGoogle Scholar
  23. Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424, 552–556.PubMedCrossRefGoogle Scholar
  24. Hayes, M. H. (1996). Statistical digital signal processing and modeling. Wiley.Google Scholar
  25. Haykin, S. (2001). Adaptive filter theory. Pearson Education India.Google Scholar
  26. Higham, N. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103, 103–118.CrossRefGoogle Scholar
  27. Iyengar, S. (2001). The analysis of multiple neural spike trains. In Advances in methodological and applied aspects of probability and statistics, Gordon and Breach (pp. 507–524).Google Scholar
  28. Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.Google Scholar
  29. Keat, J., Reinagel, P., Reid, R., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRefGoogle Scholar
  30. Kelly, R., Smith, M., Samonds, J., Kohn, A., Bonds, J., Movshon, A. B., et al. (2007). Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. Journal of Neuroscience, 27, 261–264.PubMedCrossRefGoogle Scholar
  31. Kerr, J. N. D., Greenberg, D., & Helmchen, F. (2005). Imaging input and output of neocortical networks in vivo. PNAS, 102(39), 14063–14068.PubMedCrossRefGoogle Scholar
  32. Koyama, S., & Paninski, L. (2010). Efficient computation of the map path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience, 29, 89–105.PubMedCrossRefGoogle Scholar
  33. Krumin, M., & Shoham, S. (2009). Generation of spike trains with controlled auto-and cross-correlation functions. Neural Computation, 21(6), 1642–1664.PubMedCrossRefGoogle Scholar
  34. Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18, 375–407.CrossRefGoogle Scholar
  35. Latham, P., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. The Journal of Neuroscience, 25(21), 5195.PubMedCrossRefGoogle Scholar
  36. Lawhern, V., Wu, W., Hatsopoulos, N., & Paninski, L. (2010). Population decoding of motor cortical activity using a generalized linear model with hidden states. Journal of Neuroscience Methods, 189(2), 267–280.PubMedCrossRefGoogle Scholar
  37. Litke, A., Bezayiff N., Chichilnisky E., Cunningham W., Dabrowski W., Grillo A., et al. (2004). What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 51, 1434–1440.CrossRefGoogle Scholar
  38. Macke, J., Berens, P., Ecker, A., Tolias, A., & Bethge, M. (2009). Generating spike trains with specified correlation coefficients. Neural Computation, 21, 397–423.PubMedCrossRefGoogle Scholar
  39. MacLean, J., Watson, B., Aaron, G., & Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron, 48, 811–823.PubMedCrossRefGoogle Scholar
  40. Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000). Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies. Neural Computation, 12, 2621–2653.PubMedCrossRefGoogle Scholar
  41. Masmoudi, K., Antonini, M., & Kornprobst, P. (2010). Encoding and decoding stimuli using a biological realistic model: The non-determinism in spike timings seen as a dither signal. In Proc of research in encoding and decoding of neural ensembles.Google Scholar
  42. Mastronarde, D. (1983). Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to x-and y-cells. Journal of Neurophysiology, 49(2), 303.PubMedGoogle Scholar
  43. McCulloch, C., Searle, S., & Neuhaus, J. (2008). Generalized, linear, and mixed models. In Wiley series in probability and statistics.Google Scholar
  44. Meister, M., Lagnado, L., & Baylor, D. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207.PubMedCrossRefGoogle Scholar
  45. Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. The Annals of Applied Statistics, 5(2B), 1229–1261.CrossRefGoogle Scholar
  46. Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS, 100, 11,041–11,046.PubMedCrossRefGoogle Scholar
  47. Niebur, E. (2007). Generation of synthetic spike trains with defined pairwise correlations. Neural Computation, 19(7), 1720–1738.PubMedCrossRefGoogle Scholar
  48. Nirenberg, S., Carcieri, S., Jacobs, A., & Latham, P. (2002). Retinal ganglion cells act largely as independent encoders. Nature, 411, 698–701.CrossRefGoogle Scholar
  49. Nykamp, D. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied Mathematics, 65, 2005–2032.CrossRefGoogle Scholar
  50. Nykamp, D. (2008). Exploiting history-dependent effects to infer network connectivity. SIAM Journal on Applied Mathematics, 68(2), 354–391.CrossRefGoogle Scholar
  51. Nykamp, D. (2009). A stimulus-dependent connectivity analysis of neuronal networks. Journal of Mathematical Biology, 59(2), 147–173.PubMedCrossRefGoogle Scholar
  52. Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., & Reid, R. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442(7105), 925–928.PubMedCrossRefGoogle Scholar
  53. Okatan, M., Wilson, M., & Brown, E. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17, 1927–1961.PubMedCrossRefGoogle Scholar
  54. Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRefGoogle Scholar
  55. Paninski, L. (2005). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in Neural Information Processing Systems 17.Google Scholar
  56. Paninski, L., Pillow, J., & Simoncelli, E. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. Neural Computation, 16, 2533–2561.PubMedCrossRefGoogle Scholar
  57. Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010) A new look at state-space models for neural data. Journal of Computational Neuroscience, 29, 107–126.PubMedCrossRefGoogle Scholar
  58. Pillow, J., & Latham, P. (2007). Neural characterization in partially observed populations of spiking neurons. In NIPS.Google Scholar
  59. Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., & Chichilnisky, E. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11,003–11,013.PubMedCrossRefGoogle Scholar
  60. Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.PubMedCrossRefGoogle Scholar
  61. Pillow, J., Ahmadian, Y., & Paninski, L. (2011). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. Neural Computation, 23, 1–45.PubMedCrossRefGoogle Scholar
  62. Rigat, F., de Gunst, M., & van Pelt, J. (2006). Bayesian modelling and analysis of spatio-temporal neuronal networks. Bayesian Analysis, 1, 733–764.CrossRefGoogle Scholar
  63. de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802–806.PubMedCrossRefGoogle Scholar
  64. Rybicki, G., & Hummer, D. (1991). An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix. Astronomy and Astrophysics, 245, 171.Google Scholar
  65. Schneidman, E., Bialek, W., & Berry, M. (2003). Synergy, redundancy, and independence in population codes. The Journal of Neuroscience, 23(37), 11,539.PubMedGoogle Scholar
  66. Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007–1012.PubMedCrossRefGoogle Scholar
  67. Schnitzer, M., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499–511.PubMedCrossRefGoogle Scholar
  68. Segev, R., Goodhouse, J., Puchalla, J., & Berry, M. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7, 1154–1161.PubMedCrossRefGoogle Scholar
  69. Shlens, J., Field, G., Gauthier, J., Grivich, M., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. The Journal of Neuroscience, 26(32), 8254.PubMedCrossRefGoogle Scholar
  70. Shlens, J., Field, G. D., Gauthier, J. L., Greschner, M., Sher, A., Litke, A. M., et al. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29(15), 5022–5031. doi:10.1523/JNEUROSCI.5187-08.2009 PubMedCrossRefGoogle Scholar
  71. Smith, A., & Brown, E. (2003). Estimating a state-space model from point process observations. Neural Computation, 15, 965–991.PubMedCrossRefGoogle Scholar
  72. Stein, R., Weber, D., Aoyagi, Y., Prochazka, A., Wagenaar, J., Shoham, S., et al. (2004). Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion. The Journal of Physiology, 560(3), 883–896.PubMedCrossRefGoogle Scholar
  73. Stevenson, I., Rebesco, J., Miller, L., & Körding, K. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.PubMedCrossRefGoogle Scholar
  74. Stevenson, I., Rebesco, J., Hatsopoulos, N., Haga, Z., Miller, L., & Körding, K. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 17(3), 203.PubMedCrossRefGoogle Scholar
  75. Trong, P., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11(11), 1343–1351.PubMedCrossRefGoogle Scholar
  76. Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.PubMedCrossRefGoogle Scholar
  77. Usrey, W., & Reid, R. (1999). Synchronous activity in the visual system. Annual Review of Physiology, 61(1), 435–456.PubMedCrossRefGoogle Scholar
  78. Utikal, K. (1997). A new method for detecting neural interconnectivity. Biological Cyberkinetics, 76, 459–470.CrossRefGoogle Scholar
  79. Van Pelt, J., Vajda, I., Wolters, P., Corner, M., & Ramakers, G. (2005). Dynamics and plasticity in developing neuronal networks in vitro. Progress in Brain Research, 147, 173–188.PubMedGoogle Scholar
  80. Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., et al. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. In Frontiers in systems neuroscience conference abstract: Computational and systems neuroscience 2009.Google Scholar
  81. Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336–2350.PubMedGoogle Scholar
  82. Wilson, J. M., Dombeck, D. A., Diaz-Rios, M., Harris-Warrick, R. M., & Brownstone, R. M. (2007). Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse. Journal of Neurophysiology, 97(4), 3118–3125.PubMedCrossRefGoogle Scholar
  83. Wu, W., Kulkarni, J., Hatsopoulos, N., & Paninski, L. (2008). Neural decoding of goal-directed movements using a linear statespace model with hidden states. In Computational and systems neuroscience meeting.Google Scholar
  84. Yu, B., Afshar, A., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2006). Extracting dynamical structure embedded in neural activity. In NIPS.Google Scholar
  85. Yu, B., Cunningham, J., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. In NIPS.Google Scholar
  86. Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael Vidne
    • 1
  • Yashar Ahmadian
    • 2
  • Jonathon Shlens
    • 3
  • Jonathan W. Pillow
    • 4
  • Jayant Kulkarni
    • 5
  • Alan M. Litke
    • 6
  • E. J. Chichilnisky
    • 3
  • Eero Simoncelli
    • 7
  • Liam Paninski
    • 2
  1. 1.Department of Applied Physics & Applied Mathematics, Center for Theoretical NeuroscienceColumbia UniversityNew YorkUSA
  2. 2.Center for Theoretical NeuroscienceColumbia UniversityNew YorkUSA
  3. 3.The Salk Institute for Biological StudiesLa JollaUSA
  4. 4.Center for Perceptual SystemsThe University of Texas at AustinAustinUSA
  5. 5.Cold Spring Harbor LaboratoryCold Spring HarborUSA
  6. 6.Santa Cruz Institute for Particle PhysicsUniversity of CaliforniaSanta CruzUSA
  7. 7.Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations