# Modeling the impact of common noise inputs on the network activity of retinal ganglion cells

- 1k Downloads
- 39 Citations

## Abstract

Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations.

## Keywords

Retina Generalized linear model State-space model Multielectrode Recording Random-effects model## Notes

### Acknowledgements

We would like to thank F. Rieke for helpful suggestions and insight; K. Masmoudi for bringing the analogy to the dithering process to our attention; O. Barak, X. Pitkow and M. Greschner for comments on the manuscript; G. D. Field, J. L. Gauthier, and A. Sher for experimental assistance. A preliminary version of this work was presented in Vidne et al. (2009). In addition, an early version of Fig. 2 appeared previously in the review paper (Paninski et al. 2010), and Fig. 11(D) is a reproduction of a schematic figure from (Shlens et al. 2006). This work was supported by: the Gatsby Foundation (M.V.); a Robert Leet and Clara Guthrie Patterson Trust Postdoctoral Fellowship (Y.A.); an NSF Integrative Graduate Education and Research Traineeship Training Grant DGE-0333451 and a Miller Institute Fellowship for Basic Research in Science, UC Berkeley (J.S.); US National Science Foundation grant PHY-0417175 (A.M.L.); NIH Grant EY017736 (E.J.C.); HHMI (E.P.S.); NEI grant EY018003 (E.J.C., L.P. and E.P.S.); and a McKnight Scholar award (L.P.). We also gratefully acknowledge the use of the Hotfoot shared cluster computer at Columbia University.

## References

- Agresti, A. (2002). Categorical data analysis. In
*Wiley series in probability and mathematical statistics*.Google Scholar - Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009). A decoder-based spike train metric for analyzing the neural code in the retina. In
*COSYNE09*.Google Scholar - Ahmadian, Y., Pillow, J. W., & Paninski, L. (2011). Efficient Markov chain Monte Carlo methods for decoding neural spike trains.
*Neural Computation, 23*, 46–96.PubMedCrossRefGoogle Scholar - Arnett, D. (1978). Statistical dependence between neighboring retinal ganglion cells in goldfish.
*Experimental Brain Research, 32*(1), 49–53.CrossRefGoogle Scholar - Bickel, P., & Doksum, K. (2001).
*Mathematical statistics: Basic ideas and selected topics*. Prentice Hall.Google Scholar - Brivanlou, I., Warland, D., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells.
*Neuron, 20*(3), 527–539.PubMedCrossRefGoogle Scholar - Brody, C. (1999). Correlations without synchrony.
*Neural Computation, 11*, 1537–1551.PubMedCrossRefGoogle Scholar - Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding.
*Nature, 468*(7326), 964–967.PubMedCrossRefGoogle Scholar - Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems.
*Biological Cybernetics, 59*, 265–275.PubMedCrossRefGoogle Scholar - Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods.
*Proceedings of the National Academy of Sciences, 106*(33), 14058.CrossRefGoogle Scholar - Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex.
*Nature, 423*, 283–288.PubMedCrossRefGoogle Scholar - Dacey, D., & Brace, S. (1992). A coupled network for parasol but not midget ganglion cells in the primate retina.
*Visual Neuroscience, 9*(3–4), 279–290.PubMedCrossRefGoogle Scholar - DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells.
*Journal of Neurophysiology, 81*(2), 908–920.PubMedGoogle Scholar - Dombeck, D., Khabbaz, A., Collman, F., Adelman, T., & Tank, D. (2007). Imaging large-scale neural activity with cellular resolution in awake, mobile mice.
*Neuron, 56*(1), 43–57.PubMedCrossRefGoogle Scholar - Dorn, J. D., & Ringach, D. L. (2003). Estimating membrane voltage correlations from extracellular spike trains.
*Journal of Neurophysiology, 89*(4), 2271–2278.PubMedCrossRefGoogle Scholar - Fahrmeir, L., & Kaufmann, H. (1991). On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression.
*Metrika, 38*, 37–60.CrossRefGoogle Scholar - Fahrmeir, L., & Tutz, G. (1994).
*Multivariate statistical modelling based on generalized linear models*. Springer.Google Scholar - Field, G., Gauthier, J., Sher, A., Greschner, M., Machado, T., Jepson, L., et al. (2010). Mapping a neural circuit: A complete input-output diagram in the primate retina.
*Nature, 467*, 673–677.PubMedCrossRefGoogle Scholar - Frechette, E., Sher, A., Grivich, M., Petrusca, D., Litke, A., & Chichilnisky, E. (2005). Fidelity of the ensemble code for visual motion in primate retina.
*Journal of Neurophysiology, 94*(1), 119.PubMedCrossRefGoogle Scholar - Gauthier, J., Field, G., Sher, A., Greschner, M., Shlens, J., Litke, A., et al. (2009). Receptive fields in primate retina are coordinated to sample visual space more uniformly.
*PLoS Biology, 7*(4), e1000,063.CrossRefGoogle Scholar - Greschner, M., Shlens, J., Bakolitsa, C., Field, G., Gauthier, J., Jepson, L., et al. (2011). Correlated firing among major ganglion cell types in primate retina.
*The Journal of Physiology, 589*(1), 75.PubMedCrossRefGoogle Scholar - Gutnisky, D., & Josic, K. (2010). Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process.
*Journal of Neurophysiology, 103*(5), 2912.PubMedCrossRefGoogle Scholar - Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus.
*Nature, 424*, 552–556.PubMedCrossRefGoogle Scholar - Hayes, M. H. (1996).
*Statistical digital signal processing and modeling*. Wiley.Google Scholar - Haykin, S. (2001).
*Adaptive filter theory*. Pearson Education India.Google Scholar - Higham, N. (1988). Computing a nearest symmetric positive semidefinite matrix.
*Linear Algebra and its Applications, 103*, 103–118.CrossRefGoogle Scholar - Iyengar, S. (2001). The analysis of multiple neural spike trains. In
*Advances in methodological and applied aspects of probability and statistics, Gordon and Breach*(pp. 507–524).Google Scholar - Kass, R., & Raftery, A. (1995). Bayes factors.
*Journal of the American Statistical Association, 90*, 773–795.Google Scholar - Keat, J., Reinagel, P., Reid, R., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons.
*Neuron, 30*, 803–817.PubMedCrossRefGoogle Scholar - Kelly, R., Smith, M., Samonds, J., Kohn, A., Bonds, J., Movshon, A. B., et al. (2007). Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex.
*Journal of Neuroscience, 27*, 261–264.PubMedCrossRefGoogle Scholar - Kerr, J. N. D., Greenberg, D., & Helmchen, F. (2005). Imaging input and output of neocortical networks
*in vivo*.*PNAS, 102*(39), 14063–14068.PubMedCrossRefGoogle Scholar - Koyama, S., & Paninski, L. (2010). Efficient computation of the map path and parameter estimation in integrate-and-fire and more general state-space models.
*Journal of Computational Neuroscience, 29*, 89–105.PubMedCrossRefGoogle Scholar - Krumin, M., & Shoham, S. (2009). Generation of spike trains with controlled auto-and cross-correlation functions.
*Neural Computation, 21*(6), 1642–1664.PubMedCrossRefGoogle Scholar - Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data.
*Network: Computation in Neural Systems, 18*, 375–407.CrossRefGoogle Scholar - Latham, P., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited.
*The Journal of Neuroscience, 25*(21), 5195.PubMedCrossRefGoogle Scholar - Lawhern, V., Wu, W., Hatsopoulos, N., & Paninski, L. (2010). Population decoding of motor cortical activity using a generalized linear model with hidden states.
*Journal of Neuroscience Methods, 189*(2), 267–280.PubMedCrossRefGoogle Scholar - Litke, A., Bezayiff N., Chichilnisky E., Cunningham W., Dabrowski W., Grillo A., et al. (2004). What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity.
*IEEE Transactions on Nuclear Science, 51*, 1434–1440.CrossRefGoogle Scholar - Macke, J., Berens, P., Ecker, A., Tolias, A., & Bethge, M. (2009). Generating spike trains with specified correlation coefficients.
*Neural Computation, 21*, 397–423.PubMedCrossRefGoogle Scholar - MacLean, J., Watson, B., Aaron, G., & Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation.
*Neuron, 48*, 811–823.PubMedCrossRefGoogle Scholar - Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000). Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies.
*Neural Computation, 12*, 2621–2653.PubMedCrossRefGoogle Scholar - Masmoudi, K., Antonini, M., & Kornprobst, P. (2010). Encoding and decoding stimuli using a biological realistic model: The non-determinism in spike timings seen as a dither signal. In
*Proc of research in encoding and decoding of neural ensembles*.Google Scholar - Mastronarde, D. (1983). Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to x-and y-cells.
*Journal of Neurophysiology, 49*(2), 303.PubMedGoogle Scholar - McCulloch, C., Searle, S., & Neuhaus, J. (2008). Generalized, linear, and mixed models. In
*Wiley series in probability and statistics*.Google Scholar - Meister, M., Lagnado, L., & Baylor, D. (1995). Concerted signaling by retinal ganglion cells.
*Science, 270*(5239), 1207.PubMedCrossRefGoogle Scholar - Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data.
*The Annals of Applied Statistics, 5*(2B), 1229–1261.CrossRefGoogle Scholar - Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys.
*PNAS, 100*, 11,041–11,046.PubMedCrossRefGoogle Scholar - Niebur, E. (2007). Generation of synthetic spike trains with defined pairwise correlations.
*Neural Computation, 19*(7), 1720–1738.PubMedCrossRefGoogle Scholar - Nirenberg, S., Carcieri, S., Jacobs, A., & Latham, P. (2002). Retinal ganglion cells act largely as independent encoders.
*Nature, 411*, 698–701.CrossRefGoogle Scholar - Nykamp, D. (2005). Revealing pairwise coupling in linear-nonlinear networks.
*SIAM Journal on Applied Mathematics, 65*, 2005–2032.CrossRefGoogle Scholar - Nykamp, D. (2008). Exploiting history-dependent effects to infer network connectivity.
*SIAM Journal on Applied Mathematics, 68*(2), 354–391.CrossRefGoogle Scholar - Nykamp, D. (2009). A stimulus-dependent connectivity analysis of neuronal networks.
*Journal of Mathematical Biology, 59*(2), 147–173.PubMedCrossRefGoogle Scholar - Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., & Reid, R. (2006). Highly ordered arrangement of single neurons in orientation pinwheels.
*Nature, 442*(7105), 925–928.PubMedCrossRefGoogle Scholar - Okatan, M., Wilson, M., & Brown, E. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity.
*Neural Computation, 17*, 1927–1961.PubMedCrossRefGoogle Scholar - Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models.
*Network: Computation in Neural Systems, 15*, 243–262.CrossRefGoogle Scholar - Paninski, L. (2005). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in Neural Information Processing Systems 17.Google Scholar
- Paninski, L., Pillow, J., & Simoncelli, E. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural model.
*Neural Computation, 16*, 2533–2561.PubMedCrossRefGoogle Scholar - Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010) A new look at state-space models for neural data.
*Journal of Computational Neuroscience, 29*, 107–126.PubMedCrossRefGoogle Scholar - Pillow, J., & Latham, P. (2007). Neural characterization in partially observed populations of spiking neurons. In
*NIPS*.Google Scholar - Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., & Chichilnisky, E. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model.
*Journal of Neuroscience, 25*, 11,003–11,013.PubMedCrossRefGoogle Scholar - Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population.
*Nature, 454*, 995–999.PubMedCrossRefGoogle Scholar - Pillow, J., Ahmadian, Y., & Paninski, L. (2011). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains.
*Neural Computation, 23*, 1–45.PubMedCrossRefGoogle Scholar - Rigat, F., de Gunst, M., & van Pelt, J. (2006). Bayesian modelling and analysis of spatio-temporal neuronal networks.
*Bayesian Analysis, 1*, 733–764.CrossRefGoogle Scholar - de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate.
*Nature, 448*, 802–806.PubMedCrossRefGoogle Scholar - Rybicki, G., & Hummer, D. (1991). An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix.
*Astronomy and Astrophysics, 245*, 171.Google Scholar - Schneidman, E., Bialek, W., & Berry, M. (2003). Synergy, redundancy, and independence in population codes.
*The Journal of Neuroscience, 23*(37), 11,539.PubMedGoogle Scholar - Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population.
*Nature, 440*, 1007–1012.PubMedCrossRefGoogle Scholar - Schnitzer, M., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain.
*Neuron, 37*, 499–511.PubMedCrossRefGoogle Scholar - Segev, R., Goodhouse, J., Puchalla, J., & Berry, M. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch.
*Nature Neuroscience, 7*, 1154–1161.PubMedCrossRefGoogle Scholar - Shlens, J., Field, G., Gauthier, J., Grivich, M., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina.
*The Journal of Neuroscience, 26*(32), 8254.PubMedCrossRefGoogle Scholar - Shlens, J., Field, G. D., Gauthier, J. L., Greschner, M., Sher, A., Litke, A. M., et al. (2009). The structure of large-scale synchronized firing in primate retina.
*Journal of Neuroscience, 29*(15), 5022–5031. doi: 10.1523/JNEUROSCI.5187-08.2009 PubMedCrossRefGoogle Scholar - Smith, A., & Brown, E. (2003). Estimating a state-space model from point process observations.
*Neural Computation, 15*, 965–991.PubMedCrossRefGoogle Scholar - Stein, R., Weber, D., Aoyagi, Y., Prochazka, A., Wagenaar, J., Shoham, S., et al. (2004). Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion.
*The Journal of Physiology, 560*(3), 883–896.PubMedCrossRefGoogle Scholar - Stevenson, I., Rebesco, J., Miller, L., & Körding, K. (2008). Inferring functional connections between neurons.
*Current Opinion in Neurobiology, 18*(6), 582–588.PubMedCrossRefGoogle Scholar - Stevenson, I., Rebesco, J., Hatsopoulos, N., Haga, Z., Miller, L., & Körding, K. (2009). Bayesian inference of functional connectivity and network structure from spikes.
*IEEE Transactions On Neural Systems And Rehabilitation Engineering, 17*(3), 203.PubMedCrossRefGoogle Scholar - Trong, P., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells.
*Nature Neuroscience, 11*(11), 1343–1351.PubMedCrossRefGoogle Scholar - Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects.
*Journal of Neurophysiology, 93*, 1074–1089.PubMedCrossRefGoogle Scholar - Usrey, W., & Reid, R. (1999). Synchronous activity in the visual system.
*Annual Review of Physiology, 61*(1), 435–456.PubMedCrossRefGoogle Scholar - Utikal, K. (1997). A new method for detecting neural interconnectivity.
*Biological Cyberkinetics, 76*, 459–470.CrossRefGoogle Scholar - Van Pelt, J., Vajda, I., Wolters, P., Corner, M., & Ramakers, G. (2005). Dynamics and plasticity in developing neuronal networks
*in vitro*.*Progress in Brain Research, 147*, 173–188.PubMedGoogle Scholar - Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., et al. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. In
*Frontiers in systems neuroscience conference abstract: Computational and systems neuroscience 2009*.Google Scholar - Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells.
*Journal of Neurophysiology, 78*, 2336–2350.PubMedGoogle Scholar - Wilson, J. M., Dombeck, D. A., Diaz-Rios, M., Harris-Warrick, R. M., & Brownstone, R. M. (2007). Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse.
*Journal of Neurophysiology, 97*(4), 3118–3125.PubMedCrossRefGoogle Scholar - Wu, W., Kulkarni, J., Hatsopoulos, N., & Paninski, L. (2008). Neural decoding of goal-directed movements using a linear statespace model with hidden states. In
*Computational and systems neuroscience meeting*.Google Scholar - Yu, B., Afshar, A., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2006). Extracting dynamical structure embedded in neural activity. In
*NIPS*.Google Scholar - Yu, B., Cunningham, J., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. In
*NIPS*.Google Scholar - Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells.
*Journal of Neurophysiology, 79*, 1017–1044.PubMedGoogle Scholar