Journal of Computational Neuroscience

, Volume 33, Issue 1, pp 41–51 | Cite as

Dynamical changes in neurons during seizures determine tonic to clonic shift

  • Bryce BeverlinII
  • James Kakalios
  • Duane Nykamp
  • Theoden Ivan NetoffEmail author


A tonic-clonic seizure transitions from high frequency asynchronous activity to low frequency coherent oscillations, yet the mechanism of transition remains unknown. We propose a shift in network synchrony due to changes in cellular response. Here we use phase-response curves (PRC) from Morris-Lecar (M-L) model neurons with synaptic depression and gradually decrease input current to cells within a network simulation. This method effectively decreases firing rates resulting in a shift to greater network synchrony illustrating a possible mechanism of the transition phenomenon. PRCs are measured from the M-L conductance based model cell with a range of input currents within the limit cycle. A large network of 3000 excitatory neurons is simulated with a network topology generated from second-order statistics which allows a range of population synchrony. The population synchrony of the oscillating cells is measured with the Kuramoto order parameter, which reveals a transition from tonic to clonic phase exhibited by our model network. The cellular response shift mechanism for the tonic-clonic seizure transition reproduces the population behavior closely when compared to EEG data.


Seizure model PRC Tonic clonic Synchrony 



Thanks to Bard Ermentrout and Chris Warren for helpful discussions. Funding for this work provided by UMN Grant-In-Aid and NSF CAREER award.


  1. Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control [see comments]. Science, 275(5297), 220–224.PubMedCrossRefGoogle Scholar
  2. Achuthan, S., & Canavier, C. C. (2009). Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(16), 5218–5233.CrossRefGoogle Scholar
  3. Bragin, A., Engel, J., Jr., & Staba, R. J. (2010). High-frequency oscillations in epileptic brain. Current Opinion in Neurology, 23(2), 151–156.PubMedCrossRefGoogle Scholar
  4. Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16(4), 673–715.PubMedCrossRefGoogle Scholar
  5. Buia, C., & Tiesinga, P. (2006). Attentional modulation of firing rate and synchrony in a model cortical network. Journal of Computational Neuroscience, 20(3), 247–264.PubMedCrossRefGoogle Scholar
  6. Dror, R. O., Canavier, C. C., Butera, R. J., Clark, J. W., & Byrne, J. H. (1999). A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators. Biological Cybernetics, 80(1), 11–23.PubMedCrossRefGoogle Scholar
  7. Ermentrout, G. B., & Kleinfeld, D. (2001). Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron, 29(1), 33–44.PubMedCrossRefGoogle Scholar
  8. Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci U S A, 95(3), 1259–164.PubMedCrossRefGoogle Scholar
  9. Ermentrout, G. B., Beverlin, B. 2nd, Troyer, T., & Netoff, T. I. (2011). The variance of phase-resetting curves. Journal of Computational NeuroscienceGoogle Scholar
  10. Fink, C. G., Booth, V., & Zochowski, M. (2011). Cellularly-driven differences in network synchronization propensity are differentially modulated by firing frequency. PLoS Computational Biology, 7(5), e1002062.PubMedCrossRefGoogle Scholar
  11. Fisch, J. F., & Olejniczak, P. W. (2006). Generalized-tonic-clonic seizures. In E. Wyllie, A. Gupta, & D. K. Lachhwani (Eds.), The treatment of epilepsy: Principles & practice (p. 279). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  12. Garcia Dominguez, L., Wennberg, R. A., Gaetz, W., Cheyne, D., Snead, O. C., 3rd, & Perez Velazquez, J. L. (2005). Enhanced synchrony in epileptiform activity? local versus distant phase synchronization in generalized seizures. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(35), 8077–8084.CrossRefGoogle Scholar
  13. Gastaut, H., & Broughton, R. J. (1972). Epileptic seizures; clinical and electrographic features, diagnosis and treatment. Springfield: Thomas.Google Scholar
  14. Glass, L., & Mackey, M. C. (1988). From clocks to chaos: The rhythms of life. Princeton: Princeton University Press.Google Scholar
  15. Goel, P., & Ermentrout, G. B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D: Nonlinear Phenomena, 163(3–4), 191.CrossRefGoogle Scholar
  16. Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Comput, 7(2), 307–37.PubMedCrossRefGoogle Scholar
  17. Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer.CrossRefGoogle Scholar
  18. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT.Google Scholar
  19. Kopell, N., & Ermentrout, G. B. (2002). Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In B. Fiedler (Ed.), Handbook on dynamical systems (pp. 3–54). New York: Elsevier.CrossRefGoogle Scholar
  20. Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.CrossRefGoogle Scholar
  21. Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling. Journal of Computational Neuroscience, 14(3), 283–309.PubMedCrossRefGoogle Scholar
  22. Mancilla, J. G., Lewis, T. J., Pinto, D. J., Rinzel, J., & Connors, B. W. (2007). Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(8), 2058–2073.CrossRefGoogle Scholar
  23. Manor, Y., & Nadim, F. (2001). Synaptic depression mediates bistability in neuronal networks with recurrent inhibitory connectivity. J Neurosci, 21(23), 9460–9470.PubMedGoogle Scholar
  24. Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35(1), 193–213.PubMedCrossRefGoogle Scholar
  25. Neltner, L., Hansel, D., Mato, G., & Meunier, C. (2000). Synchrony in heterogeneous networks of spiking neurons. Neural Comput, 12(7), 1607–41.PubMedCrossRefGoogle Scholar
  26. Netoff, T. I., & Schiff, S. J. (2002). Decreased neuronal synchronization during experimental seizures. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(16), 7297–7307.Google Scholar
  27. Netoff, T. I., Clewley, R., Arno, S., Keck, T., & White, J. A. (2004). Epilepsy in small-world networks. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(37), 8075–8083.CrossRefGoogle Scholar
  28. Netoff, T. I., et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93(3), 1197–1208.PubMedCrossRefGoogle Scholar
  29. Neu, J. (1979). Coupled chemical oscillators. SIAM J. Appl. Math., 37307–315.Google Scholar
  30. Perez Velazquez, J. L., Garcia Dominguez, L., & Wennberg, R. (2007). Complex phase synchronization in epileptic seizures: Evidence for a devil's staircase. Physical Review.E, Statistical, Nonlinear, and Soft Matter Physics, 75(1 Pt 1), 011922.Google Scholar
  31. Quian Quiroga, R., Blanco, S., Rosso, O. A., Garcia, H., & Rabinowicz, A. (1997). Searching for hidden information with gabor transform in generalized tonic-clonic seizures. Electroencephalography and Clinical Neurophysiology, 103(4), 434–439.PubMedCrossRefGoogle Scholar
  32. Rinzel, J. (1985). Excitation dynamics: Insights from simplified membrane models. Federation Proceedings, 44(15), 2944–2946.PubMedGoogle Scholar
  33. Schindler, K., Elger, C. E., & Lehnertz, K. (2007). Increasing synchronization may promote seizure termination: evidence from status epilepticus. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 118(9), 1955–1968.CrossRefGoogle Scholar
  34. Schindler, K., Leung, H., Elger, C. E., & Lehnertz, K. (2007). Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain: A Journal of Neurology, 130(Pt 1), 65–77.Google Scholar
  35. Smeal, R. M., Ermentrout, G. B., & White, J. A. (2010). Phase-response curves and synchronized neural networks. Philosophical Transactions of the Royal Society of London.Series B, Biological Sciences, 365(1551), 2407–2422.PubMedCrossRefGoogle Scholar
  36. Song, S., Sjostrom, P. J., Reigl, M., Nelson, S., & Chklovskii, D. B. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3), e68.PubMedCrossRefGoogle Scholar
  37. Strogatz, S. H. (2000). From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(1–4), 1.CrossRefGoogle Scholar
  38. Tiesinga, P. H., & Sejnowski, T. J. (2004). Rapid temporal modulation of synchrony by competition in cortical interneuron networks. Neural Computation, 16(2), 251–275.PubMedCrossRefGoogle Scholar
  39. Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., & Nelson, S. B. (1997). A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci, 17(20), 7926–740.PubMedGoogle Scholar
  40. Ward, A. A. Jr. (1961). The epileptic neurone. Epilepsia, 270–280.Google Scholar
  41. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393(6684), 440–442.PubMedCrossRefGoogle Scholar
  42. Winfree, A. T. (2001). The geometry of biological time. New York: Springer.Google Scholar
  43. Zhao, L., Beverlin B. 2nd, Netoff, T., & Nykamp D. Q. (2011). Synchronization from second order network connectivity statistics. Frontiers in Computational Neuroscience, 528.Google Scholar
  44. Ziburkus, J., Cressman, J. R., Barreto, E., & Schiff, S. J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. Journal of Neurophysiology, 95(6), 3948–3954.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bryce BeverlinII
    • 1
  • James Kakalios
    • 1
  • Duane Nykamp
    • 2
  • Theoden Ivan Netoff
    • 3
    Email author
  1. 1.Department of PhysicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations