Journal of Computational Neuroscience

, Volume 32, Issue 3, pp 539–553 | Cite as

Influences of membrane properties on phase response curve and synchronization stability in a model globus pallidus neuron

  • Tomohiro Fujita
  • Tomoki Fukai
  • Katsunori KitanoEmail author


The activity patterns of the globus pallidus (GPe) and subthalamic nucleus (STN) are closely associated with motor function and dysfunction in the basal ganglia. In the pathological state caused by dopamine depletion, the STN–GPe network exhibits rhythmic synchronous activity accompanied by rebound bursts in the STN. Therefore, the mechanism of activity transition is a key to understand basal ganglia functions. As synchronization in GPe neurons could induce pathological STN rebound bursts, it is important to study how synchrony is generated in the GPe. To clarify this issue, we applied the phase-reduction technique to a conductance-based GPe neuronal model in order to derive the phase response curve (PRC) and interaction function between coupled GPe neurons. Using the PRC and interaction function, we studied how the steady-state activity of the GPe network depends on intrinsic membrane properties, varying ionic conductances on the membrane. We noted that a change in persistent sodium current, fast delayed rectifier Kv3 potassium current, M-type potassium current and small conductance calcium-dependent potassium current influenced the PRC shape and the steady state. The effect of those currents on the PRC shape could be attributed to extension of the firing period and reduction of the phase response immediately after an action potential. In particular, the slow potassium current arising from the M-type potassium and the SK current was responsible for the reduction of the phase response. These results suggest that the membrane property modulation controls synchronization/asynchronization in the GPe and the pathological pattern of STN–GPe activity.


Globus pallidus Synchronization Phase response curve Membrane property modulation 



We thank Takeshi Takekawa for helpful comments on the numerical calculation of phase response curves.


  1. Baranauskas, G., Tkatch, T., & Surmeier, D. J. (1999). Delayed rectifier current in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K+ channels. Journal of Neuroscience, 19, 6394–6404.PubMedGoogle Scholar
  2. Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., et al. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to subthalamic nucleus. Journal of Neurophysiology, 102, 532–545.PubMedCrossRefGoogle Scholar
  3. Bevan, M. D., Wilson, C. J., Bolam, J. P., & Magill, P. J. (2000). Equilibrium potential of GABAA current and implications for rebound burst firing in rat subthalamic neurons in vitro. Journal of Neurophysiology, 83, 3169–3172.PubMedGoogle Scholar
  4. Bevan, M. D., Atherton, J. F., & Baufreton, J. (2006). Cellular principles underlying normal and pathological activity in the subthalamic nucleus. Current Opinion in Neurobiology, 16, 621–628.PubMedCrossRefGoogle Scholar
  5. Bolam, J. P., Hanley, J. J., Booth, P. A. C., & Bevan, M. D. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy, 196, 527–542.PubMedCrossRefGoogle Scholar
  6. Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. Journal of Neuroscience, 21, 1033–1038.PubMedGoogle Scholar
  7. Car, D. B., Day, M., Cantrell, A. R., Held, J., Scheuer, T., Catterall, W. A., et al. (2003). Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity. Neuron, 39, 793–806.CrossRefGoogle Scholar
  8. Cooper, A. J., & Stanford, I. M. (2000). Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. Journal de Physiologie, 527, 291–304.CrossRefGoogle Scholar
  9. DeLong, M. R., Crutcher, M. D., & Georgopoulos, A. P. (1985). Primate globus pallidus and subthalamic nucleus: functional organization. Journal of Neurophysiology, 53, 530–543.PubMedGoogle Scholar
  10. Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. In C. Koch & I. Segev (Eds.), Methods in neural modeling (pp. 1–25). Cambridge: MIT.Google Scholar
  11. Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.PubMedCrossRefGoogle Scholar
  12. Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators, I. SIAM Journal on Mathematical Analysis, 15, 215–237.CrossRefGoogle Scholar
  13. Günay, C., Edgerton, J. R., & Jaeger, D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. Journal of Neuroscience, 28, 7476–7491.PubMedCrossRefGoogle Scholar
  14. Hallworth, N. E., & Bevan, M. D. (2005). Globus pallidus neurons dynamically regulate the activity pattern of subthalamic nucleus neurons through the frequency-dependent activation of postsynaptic GABAA and GABAB receptors. Journal of Neuroscience, 25, 6304–6315.PubMedCrossRefGoogle Scholar
  15. Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer.CrossRefGoogle Scholar
  16. Kita, H., & Kitai, S. T. (1994). The morphology of globus pallidus projection neurons in the rat: an intracellular staining study. Brain Research, 636, 308–319.PubMedCrossRefGoogle Scholar
  17. Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.CrossRefGoogle Scholar
  18. Ljungstrom, T., Grunnet, M., Jensen, B. S., & Olesen, S. P. (2003). Functional coupling between hetrologously expressed dopemine D(2) receptors and KCNQ channels. Pflügers Archiv, 446, 684–694.PubMedCrossRefGoogle Scholar
  19. Magill, P. J., Bolam, J. P., & Bevan, M. D. (2000). Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. Journal of Neuroscience, 20, 820–833.PubMedGoogle Scholar
  20. Nambu, A., & Llinás, R. (1994). Electrophysiology of globus pallidus neurons in vitro. Journal of Neurophysiology, 72, 1127–1139.PubMedGoogle Scholar
  21. Nomura, M., Fukai, T., & Aoyagi, T. (2003). Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. Neural Computation, 15, 2179–2198.PubMedCrossRefGoogle Scholar
  22. Pfeuty, B., Mato, G., Golomb, D., & Hansel, D. (2003). Electrical synapses and synchrony: the role of intrinsic currents. Journal of Neuroscience, 23, 6280–6294.PubMedGoogle Scholar
  23. Plenz, D., & Kitai, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.PubMedCrossRefGoogle Scholar
  24. Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20, 8559–8571.PubMedGoogle Scholar
  25. Rivlin-Etzion, M., Marmor, O., Heimer, G., Raz, A., Nini, A., & Bergman, H. (2006). Basal ganglia oscillations and pathophysiology of movement disorders. Current Opinion in Neurobiology, 16, 629–637.PubMedCrossRefGoogle Scholar
  26. Sadek, A. R., Magill, P. J., & Bolam, J. P. (2007). A single-cell analysis of intrinsic connectivity in the rat globus pallidus. Journal of Neuroscience, 27, 6352–6362.PubMedCrossRefGoogle Scholar
  27. Schultheiss, N. W., Edgerton, J. R., & Jaeger, D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. Journal of Neuroscience, 30, 2767–2782.PubMedCrossRefGoogle Scholar
  28. Stanford, I. M. (2003). Independent neuronal oscillators of the rat globus pallidus. Journal of Neurophysiology, 89, 1713–1717.PubMedCrossRefGoogle Scholar
  29. Stiefel, K. M., Gutkin, B. S., & Sejnowski, T. J. (2008). Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PLoS One, 3, e3947.PubMedCrossRefGoogle Scholar
  30. Surmeier, D. J., Eberwine, J., Wilson, C. J., Cao, Y., Stefani, A., & Kitai, S. T. (1992). Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci USA, 89, 10178–10182.PubMedCrossRefGoogle Scholar
  31. Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30, 228–235.PubMedCrossRefGoogle Scholar
  32. Takekawa, T., Aoyagi, T., & Fukai, T. (2007). Synchronous and asynchronous bursting states: role of intrinsic neural dynamics. Journal of Computational Neuroscience, 23, 189–200.PubMedCrossRefGoogle Scholar
  33. Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.PubMedGoogle Scholar
  34. Wang, X. J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tomohiro Fujita
    • 1
  • Tomoki Fukai
    • 2
  • Katsunori Kitano
    • 3
    Email author
  1. 1.Graduate School of Science and EngineeringRitsumeikan UniversityKusatsuJapan
  2. 2.Laboratory for Neural Circuit TheoryRIKEN Brain Science InstituteWakoJapan
  3. 3.Department of Human and Computer IntelligenceRitsumeikan UniversityKusatsuJapan

Personalised recommendations