Journal of Computational Neuroscience

, Volume 32, Issue 3, pp 465–477

Beta-amyloid induced changes in A-type K+ current can alter hippocampo-septal network dynamics

  • Xin Zou
  • Damien Coyle
  • KongFatt Wong-Lin
  • Liam Maguire
Article

Abstract

Alzheimer’s disease (AD) progression is usually associated with memory deficits and cognitive decline. A hallmark of AD is the accumulation of beta-amyloid (Aβ) peptide, which is known to affect the hippocampal pyramidal neurons in the early stage of AD. Previous studies have shown that Aβ can block A-type K+ currents in the hippocampal pyramidal neurons and enhance the neuronal excitability. However, the mechanisms underlying such changes and the effects of the hyper-excited pyramidal neurons on the hippocampo-septal network dynamics are still to be investigated. In this paper, Aβ-blocked A-type current is simulated, and the resulting neuronal and network dynamical changes are evaluated in terms of the theta band power. The simulation results demonstrate an initial slight but significant theta band power increase as the A-type current starts to decrease. However, the theta band power eventually decreases as the A-type current is further decreased. Our analysis demonstrates that Aβ blocked A-type currents can increase the pyramidal neuronal excitability by preventing the emergence of a steady state. The increased theta band power is due to more pyramidal neurons recruited into spiking mode during the peak of pyramidal theta oscillations. However, the decreased theta band power is caused by the spiking phase relationship between different neuronal populations, which is critical for theta oscillation, is violated by the hyper-excited pyramidal neurons. Our findings could provide potential implications on some AD symptoms, such as memory deficits and AD caused epilepsy.

Keyword

Alzheimer’s disease β-Amyloid A-type K+ current Phase-plane analysis Hippocampo-septal theta rhythm 

References

  1. Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2005). Alzheimer’s disease and models of computation: imaging, classification, and neural models. Journal of Alzheimer’s Disease, 7(3), 187–199. discussion 255–162.PubMedGoogle Scholar
  2. Chen, C. (2005). beta-Amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons. Biochemical and Biophysical Research Communications, 338(4), 1913–1919.PubMedCrossRefGoogle Scholar
  3. Chi, S., & Qi, Z. (2006). Regulatory effect of sulphatides on BKCa channels. British Journal of Pharmacology, 149(8), 1031–1038.PubMedCrossRefGoogle Scholar
  4. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O., & Somogyi, P. (1995). Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature, 378(6552), 75–78. doi:10.1038/378075a0.PubMedCrossRefGoogle Scholar
  5. Colom, L. V. (2006). Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. Journal of Neurochemistry, 96(3), 609–623. doi:10.1111/j.1471-4159.2005.03630.x.PubMedCrossRefGoogle Scholar
  6. Colom, L. V., Castaneda, M. T., Banuelos, C., Puras, G., Garcia-Hernandez, A., Hernandez, S., et al. (2010). Medial septal beta-amyloid 1–40 injections alter septo-hippocampal anatomy and function. Neurobiology of Aging, 31(1), 46–57. doi:10.1016/j.neurobiolaging.2008.05.006.PubMedCrossRefGoogle Scholar
  7. Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., & Buzsaki, G. (1999). Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. Journal of Neuroscience, 19(1), 274–287.PubMedGoogle Scholar
  8. Cutsuridis, V., Cobb, S., & Graham, B. P. (2010). Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus, 20(3), 423–446. doi:10.1002/hipo.20661.PubMedGoogle Scholar
  9. Freund, T. F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336(6195), 170–173. doi:10.1038/336170a0.PubMedCrossRefGoogle Scholar
  10. Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470. doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I.PubMedCrossRefGoogle Scholar
  11. Golomb, D., & Hansel, D. (2000). The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Computation, 12(5), 1095–1139.PubMedCrossRefGoogle Scholar
  12. Good, T. A., Smith, D. O., & Murphy, R. M. (1996). Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons. Biophysical Journal, 70(1), 296–304.PubMedCrossRefGoogle Scholar
  13. Guckenheimer, J., & Holmes, P. (1997). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Corr. 5th print. ed., Applied mathematical sciences, Vol. 42). New York: Springer.Google Scholar
  14. Hajós, M., Hoffmann, W. E., Orbán, G., Kiss, T., & Érdi, P. (2004). Modulation of septo-hippocampal Theta activity by GABAA receptors: an experimental and computational approach. Neuroscience, 126(3), 599–610.PubMedCrossRefGoogle Scholar
  15. Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256(5054), 184–185.PubMedCrossRefGoogle Scholar
  16. Hasselmo, M. E., Wyble, B. P., & Wallenstein, G. V. (1996). Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus, 6(6), 693–708. doi:10.1002/(SICI)1098-1063(1996)6:6<693::AID-HIPO12>3.0.CO;2-W.PubMedCrossRefGoogle Scholar
  17. Holscher, C., Gengler, S., Gault, V. A., Harriott, P., & Mallot, H. A. (2007). Soluble beta-amyloid[25–35] reversibly impairs hippocampal synaptic plasticity and spatial learning. European Journal of Pharmacology, 561(1–3), 85–90. doi:10.1016/j.ejphar.2007.01.040.PubMedCrossRefGoogle Scholar
  18. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting (Computational neuroscience). Cambridge: MIT Press.Google Scholar
  19. Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321(5885), 53–57. doi:10.1126/science.1149381.PubMedCrossRefGoogle Scholar
  20. Klausberger, T., Magill, P. J., Marton, L. F., Roberts, J. D., Cobden, P. M., Buzsaki, G., et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844–848. doi:10.1038/nature01374.PubMedCrossRefGoogle Scholar
  21. Li, X., Coyle, D., Maguire, L., Watson, D. R., & McGinnity, T. M. (2010). Gray matter concentration and effective connectivity changes in Alzheimer’s disease: a longitudinal structural MRI study. Neuroradiology. doi:10.1007/s00234-010-0795-1.
  22. Minati, L., Edginton, T., Bruzzone, M. G., & Giaccone, G. (2009). Current concepts in Alzheimer’s disease: a multidisciplinary review. American Journal of Alzheimer’s Disease and Other Dementias, 24(2), 95–121. doi:10.1177/1533317508328602.PubMedCrossRefGoogle Scholar
  23. Morse, T. M., Carnevale, N. T., Mutalik, P. G., Migliore, M., & Shepherd, G. M. (2010). Abnormal excitability of oblique dendrites implicated in early alzheimer’s: a computational study. Frontiers in Neural Circuits, 4. doi:10.3389/fncir.2010.00016.
  24. Mugantseva, E. A., & Podolski, L. Y. (2009). Animal model of Alzheimer’s disease: characteristics of EEG and memory. Central European Journal of Biology, 4, 507–514.CrossRefGoogle Scholar
  25. Orban, G., Kiss, T., & Erdi, P. (2006). Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. Journal of Neurophysiology, 96(6), 2889–2904. doi:10.1152/jn.01233.2005.PubMedCrossRefGoogle Scholar
  26. Palop, J. J., & Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nature Neuroscience, 13(7), 812–818. doi:10.1038/nn.2583.PubMedCrossRefGoogle Scholar
  27. Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55(5), 697–711. doi:10.1016/j.neuron.2007.07.025.PubMedCrossRefGoogle Scholar
  28. Pedroarena, C., & Llinas, R. (1997). Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 724–728.PubMedCrossRefGoogle Scholar
  29. Rotstein, H. G., Pervouchine, D. D., Acker, C. D., Gillies, M. J., White, J. A., Buhl, E. H., et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of Neurophysiology, 94(2), 1509–1518.PubMedCrossRefGoogle Scholar
  30. Stewart, M., & Fox, S. E. (1990). Do septal neurons pace the hippocampal theta rhythm? Trends in Neurosciences, 13(5), 163–168.PubMedCrossRefGoogle Scholar
  31. Takahashi, R. H., Capetillo-Zarate, E., Lin, M. T., Milner, T. A., & Gouras, G. K. (2010). Co-occurrence of Alzheimer’s disease ss-amyloid and tau pathologies at synapses. Neurobiology of Aging, 31(7), 1145–1152. doi:10.1016/j.neurobiolaging.2008.07.021.PubMedCrossRefGoogle Scholar
  32. Tiraboschi, P., Hansen, L. A., Thal, L. J., & Corey-Bloom, J. (2004). The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology, 62(11), 1984–1989.PubMedGoogle Scholar
  33. Toth, K., Freund, T. F., & Miles, R. (1997). Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. The Journal of Physiology, 500(Pt 2), 463–474.PubMedGoogle Scholar
  34. Tran, M. H., Yamada, K., & Nabeshima, T. (2002). Amyloid beta-peptide induces cholinergic dysfunction and cognitive deficits: a minireview. Peptides, 23(7), 1271–1283.PubMedCrossRefGoogle Scholar
  35. Vertes, R. P. (2005). Hippocampal theta rhythm: a tag for short-term memory. Hippocampus, 15(7), 923–935. doi:10.1002/hipo.20118.PubMedCrossRefGoogle Scholar
  36. Villette, V., Poindessous-Jazat, F., Simon, A., Lena, C., Roullot, E., Bellessort, B., et al. (2010). Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. Journal of Neuroscience, 30(33), 10991–11003.PubMedCrossRefGoogle Scholar
  37. Wang, X.-J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79(3), 1549–1566.PubMedGoogle Scholar
  38. Wang, X.-J. (2002). Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. Neurophysiology, 87, 889–900.PubMedGoogle Scholar
  39. Wang, X.-J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16(20), 6402–6413.PubMedGoogle Scholar
  40. Warman, E. N., Durand, D. M., & Yuen, G. L. (1994). Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. Journal of Neurophysiology, 71(6), 2033–2045.PubMedGoogle Scholar
  41. Webster, N. J., Ramsden, M., Boyle, J. P., Pearson, H. A., & Peers, C. (2006). Amyloid peptides mediate hypoxic increase of L-type Ca2+ channels in central neurones. Neurobiology of Aging, 27(3), 439–445.PubMedCrossRefGoogle Scholar
  42. Xu, C., Qian, C., Zhang, Z., Wu, C., Zhou, P., & Liang, X. (1998). Effects of beta-amyloid peptide on transient outward potassium current of acutely dissociated hippocampal neurons in CA1 sector in rats. Chinese Medical Journal (English Edition), 111(6), 492–495.Google Scholar
  43. Ye, H., Jalini, S., Mylvaganam, S., & Carlen, P. (2010). Activation of large-conductance Ca(2+)-activated K(+) channels depresses basal synaptic transmission in the hippocampal CA1 area in APP (swe/ind) TgCRND8 mice. Neurobiology of Aging, 31(4), 591–604.PubMedCrossRefGoogle Scholar
  44. Ylinen, A., Soltesz, I., Bragin, A., Penttonen, M., Sik, A., & Buzsaki, G. (1995). Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus, 5(1), 78–90.PubMedCrossRefGoogle Scholar
  45. Zhang, C. F., & Yang, P. (2006). Zinc-induced aggregation of Abeta (10–21) potentiates its action on voltage-gated potassium channel. Biochemical and Biophysical Research Communications, 345(1), 43–49. doi:10.1016/j.bbrc.2006.04.044.PubMedCrossRefGoogle Scholar
  46. Zou, X., Coyle, D., Wong-Lin, K., & Maguire, L. (2011). Computational study of hippocampal-septal theta rhythm changes due to beta-amyloid-altered ionic channels. PLoS One.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xin Zou
    • 1
  • Damien Coyle
    • 1
  • KongFatt Wong-Lin
    • 1
  • Liam Maguire
    • 1
  1. 1.Intelligent Systems Research CentreUniversity of UlsterDerryUK

Personalised recommendations