Journal of Computational Neuroscience

, Volume 32, Issue 2, pp 309–326 | Cite as

Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networks

  • Stephan Henker
  • Johannes Partzsch
  • René Schüffny
Article

Abstract

With the various simulators for spiking neural networks developed in recent years, a variety of numerical solution methods for the underlying differential equations are available. In this article, we introduce an approach to systematically assess the accuracy of these methods. In contrast to previous investigations, our approach focuses on a completely deterministic comparison and uses an analytically solved model as a reference. This enables the identification of typical sources of numerical inaccuracies in state-of-the-art simulation methods. In particular, with our approach we can separate the error of the numerical integration from the timing error of spike detection and propagation, the latter being prominent in simulations with fixed timestep. To verify the correctness of the testing procedure, we relate the numerical deviations to theoretical predictions for the employed numerical methods. Finally, we give an example of the influence of simulation artefacts on network behaviour and spike-timing-dependent plasticity (STDP), underlining the importance of spike-time accuracy for the simulation of STDP.

Keywords

Neural network simulation Numerical accuracy Integrate-and-fire STDP 

Notes

Acknowledgements

The research leading to these results has received funding from the European Union 7th Framework Programme (FP7/2007-2013) under grant agreement no. 269921 (BrainScaleS).

Supplementary material

10827_2011_353_MOESM1_ESM.zip (1.6 mb)
(ZIP 1.58 MB)

References

  1. Arnol’d, V. I. (1978). Ordinary differential equations. Cambridge: MIT Press.Google Scholar
  2. Bhalla, U. S., Bilitcha, D. H., & Bowera, J. M. (1992). Rallpacks: A set of benchmarks for neuronal simulators. Trends in Neurosciences, 15, 453–458.PubMedCrossRefGoogle Scholar
  3. Brenan, K. E., Campbell, S. L., & Petzold, L. R. (1989). Numerical solution of initial-value problems in differential-algebraic equations. Society for Industrial Mathematics.Google Scholar
  4. Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural Computation, 18, 2004–2027.PubMedCrossRefGoogle Scholar
  5. Brette, R., Rudolph, M., et al. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398.PubMedCrossRefGoogle Scholar
  6. Brown, P., Hindmarsh, A., & Petzold, L. (1998). Consistent initial condition calculation for differential-algebraic systems. SIAM Journal on Scientific Computing, 19(5), 1495–1512.CrossRefGoogle Scholar
  7. Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183–208.PubMedCrossRefGoogle Scholar
  8. Butera, R. J., & McCarthy, M. L. (2004). Analysis of real-time numerical integration methods applied to dynamic clamp experiments. Journal of Neural Engineering, 1, 187–194.PubMedCrossRefGoogle Scholar
  9. Carnevale, N., & Hines, M. (2006). The NEURON book. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advances in Computational Mathematics, 6(1), 207–226.CrossRefGoogle Scholar
  11. Curtiss, C. F., & Hirschfelder, J. O. (1952). Integration of stiff equations. Proceedings of the National Academy of Sciences of the United States of America, 38(3), 235–243.PubMedCrossRefGoogle Scholar
  12. Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Mueller, E., Pecevski, D., et al. (2009). PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics 2(11), 1–10. doi:10.3389/neuro.11.011.2008.Google Scholar
  13. Gear, C., Hsu, H., & Petzold, L. (1981). Differential-algebraic equations revisited. In Proceedings in numerical methods for solving stiff initial value problems. Oberwolfach.Google Scholar
  14. Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Englewood Cliffs: Prentice-Hall.Google Scholar
  15. Gerstner, W., & Kistler, W. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cambridge: Cambridge University Press.Google Scholar
  16. Gewaltig, M., & Diesmann, M. (2007). NEST. Scholarpedia, 2(4), 1430.CrossRefGoogle Scholar
  17. Goodman, D., & Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience, 3(2), 192–197.PubMedCrossRefGoogle Scholar
  18. Hairer, E., Nørsett, S. P., & Wanner, G. (1993). Solving ordinary differential equations I: Nonstiff problems. New York: Springer.Google Scholar
  19. Hairer, E., & Wanner, G. (2002). Solving ordinary differential equations II: Stiff and differential-algebraic problems. New York: Springer.Google Scholar
  20. Henrici, P. (1962). Discrete variable methods in ordinary differential equations. New York: Wiley.Google Scholar
  21. Heun, K. (1900). Neue Methode zur approximativen Integration der Differentialgleichungen einer unabhängigen Variable. Zeitschrift für Mathematik und Physik, 45, 23–38.Google Scholar
  22. Hiebert, K. L., & Shampine, L. F. (1980). Implicitly defined output points for solutions of ODEs. Sandia Report SAND80-0180.Google Scholar
  23. Hindmarsh, A. C. (1983). ODEPACK, a systematized collection of ODE solvers. IMACS Transactions on Scientific Computation, 1, 55–64.Google Scholar
  24. Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., et al. (2005). SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software, 31, 363–396.CrossRefGoogle Scholar
  25. Jolivet, R., Schürmann, F., Berger, T., Naud, R., Gerstner, W., & Roth, A. (2008). The quantitative single-neuron modeling competition. Biological Cybernetics, 99, 417–426.PubMedCrossRefGoogle Scholar
  26. Kahaner, D., Lawkins, W., & Thompson, S. (1989). On the use of rootfinding ODE software for the solution of a common problem in nonlinear dynamical systems. Journal of Computational and Applied Mathematics, 28, 219–230.CrossRefGoogle Scholar
  27. Koch, C., & Segev, I. (1998). Methods in neuronal modeling: From ions to networks. Cambridge: MIT Press.Google Scholar
  28. Kumar, A., Schrader, S., Aertsen, A., & Rotter, S. (2008). The high-conductance state of cortical networks. Neural Computation, 20, 1–43. doi:10.1162/neco.2008.20.1.1.PubMedCrossRefGoogle Scholar
  29. Kundert, K. S. (1995). The designer’s guide to Spice and Spectre. Norwell: Kluwer Academic.Google Scholar
  30. Kutta, M. (1901). Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik, 46, 435–452.Google Scholar
  31. Lax, P. D., & Richtmyer, R. D. (1956). Survey of the stability of linear finite difference equations. Communications on Pure and Applied Mathematics, 9, 267–293.CrossRefGoogle Scholar
  32. Lundqvist, M., Rehn, M., Djurfeldt, M., & Lansner, A. (2006). Attractor dynamics in a modular network model of neocortex. Network: Computation in Neural Systems, 17(3), 253–276.CrossRefGoogle Scholar
  33. Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531–2560.PubMedCrossRefGoogle Scholar
  34. Mangoldt, H. V., & Knopp, K. (1958). Einführung in die Höhere Mathematik, Bd. III. Stuttgart: Hirzel.Google Scholar
  35. Masuda, N., & Kori, H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of Computational Neuroscience, 22, 327–345.PubMedCrossRefGoogle Scholar
  36. Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12, 2305–2329.PubMedCrossRefGoogle Scholar
  37. Mayr, C., Partzsch, J., & Schüffny, R. (2010). Rate and pulse based plasticity governed by local synaptic state variables. Frontiers in Computational Neuroscience, 2, 1–28. doi:10.3389/fnsyn.2010.00033.Google Scholar
  38. Mehring, C., Hehl, U., Kubo, M., Diesmann, M., & Aertsen, A. (2003). Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biological Cybernetics, 88, 395–408.PubMedCrossRefGoogle Scholar
  39. Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98, 459–478.PubMedCrossRefGoogle Scholar
  40. Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005). Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation, 17, 1776–1801.PubMedCrossRefGoogle Scholar
  41. Morrison, A., Straube, S., Plesser, H., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19, 47–79.PubMedCrossRefGoogle Scholar
  42. Naud, R., Marcille, N., Clopath, C., & Gerstner, W. (2008). Firing patterns in the adaptive exponential integrate-and-fire model. Biological Cybernetics, 99, 335–347.PubMedCrossRefGoogle Scholar
  43. Pecevski, D., Natschläger, T., & Schuch, K. (2009). PCSIM: A parallel simulation environment for neural circuits fully integrated with Python. Frontiers on Neuroinformatics, 3(11), 1–15. doi:10.3389/neuro.11.011.2009.Google Scholar
  44. Pfister, J. P., & Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. Journal of Neuroscience, 26(38), 9673–9682.PubMedCrossRefGoogle Scholar
  45. Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 59–66.CrossRefGoogle Scholar
  46. Rotter, S., & Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biological Cybernetics, 81, 381–402.PubMedCrossRefGoogle Scholar
  47. Rudolph, M., & Destexhe, A. (2006). How much can we trust neural simulation strategies? Neurocomputing, 70(2007), 1966–1969.Google Scholar
  48. Runge, C. (1895). Über die numerische Auflösung von Differentialgleichungen. Mathematische Annalen, XLVI, 167–178.CrossRefGoogle Scholar
  49. Shelley, M., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111–119.PubMedCrossRefGoogle Scholar
  50. Song, S., Miller, K., & Abbott, L. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926.PubMedCrossRefGoogle Scholar
  51. Thompson, S., & Tuttle, P. (1984). Event detection in continuous simulation. In Proceedings of the international conference on power plant simulation (pp. 341–345).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stephan Henker
    • 1
  • Johannes Partzsch
    • 1
  • René Schüffny
    • 1
  1. 1.Endowed Chair for Parallel VLSI Systems and Neural Circuits Institute of Circuits and SystemsUniversity of Technology DresdenDresdenGermany

Personalised recommendations