Journal of Computational Neuroscience

, Volume 32, Issue 1, pp 1–24 | Cite as

Efficient fitting of conductance-based model neurons from somatic current clamp

  • Nathan F. Lepora
  • Paul G. Overton
  • Kevin Gurney


Estimating biologically realistic model neurons from electrophysiological data is a key issue in neuroscience that is central to understanding neuronal function and network behavior. However, directly fitting detailed Hodgkin–Huxley type model neurons to somatic membrane potential data is a notoriously difficult optimization problem that can require hours/days of supercomputing time. Here we extend an efficient technique that indirectly matches neuronal currents derived from somatic membrane potential data to two-compartment model neurons with passive dendrites. In consequence, this approach can fit semi-realistic detailed model neurons in a few minutes. For validation, fits are obtained to model-derived data for various thalamo-cortical neuron types, including fast/regular spiking and bursting neurons. A key aspect of the validation is sensitivity testing to perturbations arising in experimental data, including sampling rates, inadequately estimated membrane dynamics/channel kinetics and intrinsic noise. We find that maximal conductance estimates and the resulting membrane potential fits diverge smoothly and monotonically from near-perfect matches when unperturbed. Curiously, some perturbations have little effect on the error because they are compensated by the fitted maximal conductances. Therefore, the extended current-based technique applies well under moderately inaccurate model assumptions, as required for application to experimental data. Furthermore, the accompanying perturbation analysis gives insights into neuronal homeostasis, whereby tuning intrinsic neuronal properties can compensate changes from development or neurodegeneration.


Conductance-based model neuron Hodgkin–Huxley model Model fitting Optimization Neuronal homeostasis Sensitivity Neocortex Pyramidal neuron Fast spiking neuron Genesis Minimal model 



The authors thank Darren Hoyland, Mark Humphries and Ric Wood for valuable advice and discussions. This work was supported by EPSRC (CARMEN: EP/E002331/1).

Supplementary material

10827_2011_331_MOESM1_ESM.pdf (7.6 mb)
(PDF 7.64 MB)


  1. Achard, P., & De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. PLoS Computational Biology, 2(7), e94.PubMedCrossRefGoogle Scholar
  2. Achard, P., & De Schutter, E. (2008). Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models. Frontiers in Computational Neuroscience, 2, 8.PubMedCrossRefGoogle Scholar
  3. Booth, V., & Rinzel, J. (1995). A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns. Journal of Computational Neuroscience, 2(4), 299–312.PubMedCrossRefGoogle Scholar
  4. Bower, J. M., & Beeman, D. (1998). The book of GENESIS. New York: Springer.CrossRefGoogle Scholar
  5. Bush, K., Knight, J., & Anderson, C. (2005). Optimizing conductance parameters of cortical neural models via electrotonic partitions. Neural Networks, 18(5–6), 488–496.PubMedCrossRefGoogle Scholar
  6. Connors, B. W., & Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences, 13(3), 99–104.PubMedCrossRefGoogle Scholar
  7. Davis, G. W. (2006). Homeostatic control of neural activity: From phenomenology to molecular design. Annual Review of Neuroscience, 29, 307–323.PubMedCrossRefGoogle Scholar
  8. Druckmann, S., Banitt, Y., Gidon, A., Schurmann, F., Markram, H., & Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience, 1(1), 7.PubMedCrossRefGoogle Scholar
  9. Druckmann, S., Berger, T. K., Hill, S., Schurmann, F., Markram, H., & Segev, I. (2008). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 99(4), 371–379.PubMedCrossRefGoogle Scholar
  10. Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13763.PubMedCrossRefGoogle Scholar
  11. Gerstner, W., & Naud, R. (2009). Neuroscience. how good are neuron models? Science, 326(5951), 379–80.PubMedCrossRefGoogle Scholar
  12. Goldman, M. S., Golowasch, J., Marder, E., & Abbott, L. F. (2001). Global structure, robustness, and modulation of neuronal models. Journal of Neuroscience, 21(14), 5229.PubMedGoogle Scholar
  13. Golowasch, J., Goldman, M. S., Abbott, L. F., & Marder, E. (2002). Failure of averaging in the construction of a conductance-based neuron model. Journal of Neurophysiology, 87(2), 1129.PubMedGoogle Scholar
  14. Gunay, C., Edgerton, J. R., & Jaeger, D. (2008). Channel density distributions explain spiking variability in the globus pallidus: A combined physiology and computer simulation database approach. Journal of Neuroscience, 28(30), 7476.PubMedCrossRefGoogle Scholar
  15. Herz, A. V. M., Gollisch, T., Machens, C. K., & Jaeger, D. (2006). Modeling single-neuron dynamics and computations: A balance of detail and abstraction. Science, 314(5796), 80–85.PubMedCrossRefGoogle Scholar
  16. Hines, M. (1984). Efficient computation of branched nerve equations. International Journal of Bio-Medical Computing, 15(1), 69–76.PubMedCrossRefGoogle Scholar
  17. Hobbs, K. H., & Hooper, S. L. (2008). Using complicated, wide dynamic range driving to develop models of single neurons in single recording sessions. Journal of Neurophysiology, 99(4), 1871.PubMedCrossRefGoogle Scholar
  18. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544.Google Scholar
  19. Huys, Q. J. M., Ahrens, M. B., & Paninski, L. (2006). Efficient estimation of detailed single-neuron models. Journal of Neurophysiology, 96(2), 872–890.PubMedCrossRefGoogle Scholar
  20. Huys, Q. J. M., & Paninski, L. (2009). Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Computational Biology, 5(5), e1000379.PubMedCrossRefGoogle Scholar
  21. Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.PubMedCrossRefGoogle Scholar
  22. Keren, N., Peled, N., & Korngreen, A. (2005). Constraining compartmental models using multiple voltage recordings and genetic algorithms. Journal of neurophysiology, 94(6), 3730.PubMedCrossRefGoogle Scholar
  23. Kita, T., Kita, H., & Kita, S. T. (1984). Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation. Brain Research, 300, 129–139.PubMedCrossRefGoogle Scholar
  24. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.PubMedCrossRefGoogle Scholar
  25. LeMasson, G., & Maex, R. (2001). Introduction to equation solving and parameter fitting. In Computational neuroscience: Realistic modelling for experimentalists (pp. 1–25).Google Scholar
  26. Lepora, N. F., Overton, P., & Gurney, K. (2009). Efficient current-based optimization techniques for parameter estimation in multi-compartment neuronal models. BMC Neuroscience, 10(Suppl 1), 347.CrossRefGoogle Scholar
  27. Lindau, M., & Neher, E. (1988). Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflügers Archiv European Journal of Physiology, 411(2), 137–146.PubMedCrossRefGoogle Scholar
  28. Llano, I., Marty, A., Armstrong, C. M., & Konnerth, A. (1991). Synaptic-and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. The Journal of Physiology, 434(1), 183.PubMedGoogle Scholar
  29. London, M., & Hausser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28(1), 503–532.PubMedCrossRefGoogle Scholar
  30. Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382(6589), 363–366.PubMedCrossRefGoogle Scholar
  31. Marder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(7), 563–574.PubMedCrossRefGoogle Scholar
  32. Marder, E., & Prinz, A. A. (2002). Modeling stability in neuron and network function: The role of activity in homeostasis. Bioessays, 24(12), 1145–1154.PubMedCrossRefGoogle Scholar
  33. Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7(2), 2153–2160.CrossRefGoogle Scholar
  34. Mennerick, S., Que, J., Benz, A., & Zorumski, C. F. (1995). Passive and synaptic properties of hippocampal neurons grown in microcultures and in mass cultures. Journal of neurophysiology, 73(1), 320.PubMedGoogle Scholar
  35. Moore, E. H. (1920). On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society, 26, 394–395.Google Scholar
  36. Morse, T. M., Davison, A. P., & Hines, M. (2001). Parameter space reduction in neuron model optimization through minimization of residual voltage clamp current. In 31st Annual Meeting of the Society for Neuroscience, San Diego, CA, USA, 10–15 November 2001. Society for Neuroscience Abstracts (Vol. 27).Google Scholar
  37. Penrose, R. (1955). A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society, 51, 406–413.CrossRefGoogle Scholar
  38. Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1(1), 39–60.PubMedCrossRefGoogle Scholar
  39. Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., et al. (2008). Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99(4), 427–441.PubMedCrossRefGoogle Scholar
  40. Prinz, A. A., Billimoria, C. P., & Marder, E. (2003). Alternative to hand-tuning conductance-based models: Construction and analysis of databases of model neurons. Journal of Neurophysiology, 90(6), 3998.PubMedCrossRefGoogle Scholar
  41. Rall, W. (1960). Membrane potential transients and membrane time constant of motoneurons. Experimental Neurology, 2, 503–532.PubMedCrossRefGoogle Scholar
  42. Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysics Journal, 9(12), 1483–1508.CrossRefGoogle Scholar
  43. Schulz, , D. J., Goaillard, J. M., & Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. Nature Neuroscience, 9(3), 356–362.PubMedCrossRefGoogle Scholar
  44. Swensen, A. M., & Bean, B. P. (2005). Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. Journal of Neuroscience, 25(14), 3509.PubMedCrossRefGoogle Scholar
  45. Tabak, J., Murphey, C. R., & Moore, L. E. (2000). Parameter estimation methods for single neuron models. Journal of Computational Neuroscience, 9(3), 215–236.PubMedCrossRefGoogle Scholar
  46. Taylor, A. L., Goaillard, J. M., & Marder, E. (2009). How multiple conductances determine electrophysiological properties in a multicompartment model. Journal of Neuroscience, 29(17), 5573.PubMedCrossRefGoogle Scholar
  47. Taylor, A. L., Hickey, T. J., Prinz, A. A., & Marder, E. (2006). Structure and visualization of high-dimensional conductance spaces. Journal of Neurophysiology, 96(2), 891.PubMedCrossRefGoogle Scholar
  48. Tien, J. H., & Guckenheimer, J. (2008). Parameter estimation for bursting neural models. Journal of Computational Neuroscience, 24(3), 358–373.PubMedCrossRefGoogle Scholar
  49. Tobin, A. E., & Calabrese, R. L. (2006). Endogenous and half-center bursting in morphologically inspired models of leech heart interneurons. Journal of Neurophysiology, 96(4), 2089.PubMedCrossRefGoogle Scholar
  50. Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 5(2), 97–107.PubMedCrossRefGoogle Scholar
  51. Van Geit, W., Achard, P., & De Schutter, E. (2007). Neurofitter: A parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics, 1, 1.PubMedGoogle Scholar
  52. Van Geit, W., De Schutter, E., & Achard, P. (2008). Automated neuron model optimization techniques: A review. Biological Cybernetics, 99(4), 241–251.PubMedCrossRefGoogle Scholar
  53. Vanier, M. C., & Bower, J. M. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of Computational Neuroscience, 7(2), 149–171.PubMedCrossRefGoogle Scholar
  54. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304.PubMedCrossRefGoogle Scholar
  55. Weaver, C. M., & Wearne, S. L. (2006). The role of action potential shape and parameter constraints in optimization of compartment models. Neurocomputing, 69(10–12), 1053–1057.CrossRefGoogle Scholar
  56. Weaver, C. M., & Wearne, S. L. (2008). Neuronal firing sensitivity to morphologic and active membrane parameters. PLoS Computational Biology, 4(1), e11.PubMedCrossRefGoogle Scholar
  57. Wood, R., & Gurney, K. N. (2002). A new parametric search technique for biophysical models. A study in the rat neostriatal projection neuron. In 32nd annual meeting of the Society for Neuroscience, Orlando, FL, USA, 2–7 November 2002. Society for Neuroscience abstracts (Vol. 28).Google Scholar
  58. Wood, R., Gurney, K. N., & Wilson, C. J. (2004). A novel parameter optimisation technique for compartmental models applied to a model of a striatal medium spiny neuron. Neurocomputing, 58–60, 1109–1116.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nathan F. Lepora
    • 1
  • Paul G. Overton
    • 1
  • Kevin Gurney
    • 1
  1. 1.Department of PsychologyUniversity of SheffieldSheffieldUK

Personalised recommendations