Journal of Computational Neuroscience

, Volume 31, Issue 3, pp 625–645 | Cite as

Motoneuron model of self-sustained firing after spinal cord injury

Article

Abstract

Under many conditions spinal motoneurons produce plateau potentials, resulting in self-sustained firing and providing a mechanism for translating short-lasting synaptic inputs into long-lasting motor output. During the acute-stage of spinal cord injury (SCI), the endogenous ability to generate plateaus is lost; however, during the chronic-stage of SCI, plateau potentials reappear with prolonged self-sustained firing that has been implicated in the development of spasticity. In this work, we extend previous modeling studies to systematically investigate the mechanisms underlying the generation of plateau potentials in motoneurons, including the influences of specific ionic currents, the morphological characteristics of the soma and dendrite, and the interactions between persistent inward currents and synaptic input. In particular, the goal of these computational studies is to explore the possible interactions between morphological and electrophysiological changes that occur after incomplete SCI. Model results predict that some of the morphological changes generally associated with the chronic-stage for some types of spinal cord injuries can cause a decrease in self-sustained firing. This and other computational results presented here suggest that the observed increases in self-sustained firing following some types of SCI may occur mainly due to changes in membrane conductances and changes in synaptic activity, particularly changes in the strength and timing of inhibition.

Keywords

Motoneuron model Self-sustained firing Persistent inward current Spinal cord injury model 

References

  1. Adams, M. M., & Hicks, A. L. (2005). Spasticity after spinal cord injury. Spinal Cord, 43, 577–586.PubMedCrossRefGoogle Scholar
  2. Bennett, D. J., Gorassini, M. A., Fouad, K., Sanelli, L., Han, Y., & Cheng, J. (1999). Spasticity in rats with sacral spinal cord injury. Journal of Neurotrauma, 16, 69–84.PubMedCrossRefGoogle Scholar
  3. Bennett, D. J., Hultborn, H., Fedirchuk, B., & Gorassini, M. A. (1998). Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats. Journal of Neurophysiology, 80, 2023–2037.PubMedGoogle Scholar
  4. Bennett, D. J., Li, Y., & Siu, M. (2001). Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro. Journal of Neurophysiology, 86, 1955–1971.PubMedGoogle Scholar
  5. Binder, M. D., Heckman, C. J., & Powers, R. K. (1996). The physiological control of motoneuron activity. In L. B. Rowell, & J. T. Shepherd (Eds.), Handbook of physiology, exercise: Regulation and integration of multiple systems (Vol. 12, 1–53). Oxford University Press.Google Scholar
  6. Booth, V., & Rinzel, J. (1995). A minimal, compartmental model for dendritic origin of bistability of motoneuron firing patterns. Journal of Computational Neuroscience, 2, 299–312.PubMedCrossRefGoogle Scholar
  7. Booth, V., Rinzel, J., & Kiehn, O. (1997). Compartmental model of vertebrate motoneurons for Ca 2 + -dependent spiking and plateau potentials under pharmacological treatment. Journal of Neurophysiology, 78, 3371–3385.PubMedGoogle Scholar
  8. Bose, P., Parmer, R., Reier, P. J., & Thompson, F. J. (2005). Morphological changes of the soleus motoneuron pool in chronic midthoracic contused rats. Experimental Neurology, 191, 13–23.PubMedCrossRefGoogle Scholar
  9. Bui, T. V., Grande, G., & Rose, P. K. (2008a). Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents. Journal of Neurophysiology, 99, 571–582.PubMedCrossRefGoogle Scholar
  10. Bui, T. V., Grande, G., & Rose, P. K. (2008b). Relative location of inhibitory synapses and persistent inward currents determines the magnitude and mode of synaptic amplification in motoneurons. Journal of Neurophysiology, 99, 583–594.PubMedCrossRefGoogle Scholar
  11. Bui, T. V., Ter-Mikaelian, M., Bedrossian, D., & Rose, P. K. (2006). Computational estimation of the distribution of L-type Ca 2 +  channels in motoneurons based on variable threshold of activation of persistent inward currents. Journal of Neurophysiology, 95, 225–241.PubMedCrossRefGoogle Scholar
  12. Cullheim, S., Fleshman, J. W., Glenn, L. L., & Burke, R. E. (1987). Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. Journal of Comparative Neurology, 255, 68–81.PubMedCrossRefGoogle Scholar
  13. Dhooge, A., Govaerts, W., Kuznetsov, Y. A., & Sautois, B. (2003). Matcont: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software, 29(2), 141–164.CrossRefGoogle Scholar
  14. Eken, T., & Kiehn, O. (1989). Bistable firing properties of soleus motor units in unrestrained rats. Acta Physiologica Scandinavica, 136, 383–394.PubMedCrossRefGoogle Scholar
  15. ElBasiouny, S. M., Bennett, D. J., & Mushahwar, V. K. (2005). Simulation of dendritic Ca v1.3 channels in cat lumbar motorneurons: Spatial distribution. Journal of Neurophysiology, 94, 3961–3974.CrossRefGoogle Scholar
  16. Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. Philadelphia: SIAM.CrossRefGoogle Scholar
  17. Fall, C. P., Marland, E. S., Wagner, J. M., & Tyson, J. J. (2002). Computational cell biology. New York: Springer-Verlag.Google Scholar
  18. Finkel, A. S., & Redman, S. J. (1983). The synaptic current evoked in cat spinal motoneurons by impulse in single group Ia axons. Journal of Physiology, 342, 615–632.PubMedGoogle Scholar
  19. Fleshman, J. W., Segev, I., & Burke, R. B. (1988). Electrotonic architecture of type-identified α-motoneurons in the cat spinal cord. Journal of Neurophysiology, 60(1), 60–85.PubMedGoogle Scholar
  20. Fyffe, R. E. (2001). Spinal motoneurons: Synaptic inputs and receptor organization. In T. C. Cope (Ed.), Motor neurobiology of the spinal cord. NY: CRC.Google Scholar
  21. Gazula, V. R., Roberts, M., Luzzio, C., Jawad, A. F., & Kalb, R. G. (2004). Effects of limb exercise after spinal cord injury on motoneuron dendrite structure. Journal of Comparative Neurology, 476, 130–145.Google Scholar
  22. Gianano, J. M., York, M. M., Pace, J. A., & Schott, S. (1998). Quality of life: Effect of reduced spasticity from intrathecal baclofen. Journal of Neuroscience Nursing, 30, 47–54.CrossRefGoogle Scholar
  23. Graham, J., Booth, V., & Jung, R. (2005). Modeling motoneurons after spinal cord injury: Persistent inward currents and plateau potentials. Neurocomputing, 65–66, 719–726.CrossRefGoogle Scholar
  24. Gutman, A. M. (1991). Bistability of dendrites. International Journal of Neural Systems, 1, 291–304.CrossRefGoogle Scholar
  25. Harvey, P. J., Li, X., Li, Y., & Bennett, D. J. (2006a). 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury. Journal of Neurophysiology, 96, 1158–1170.PubMedCrossRefGoogle Scholar
  26. Harvey, P. J., Li, X., Li, Y., & Bennett, D. J. (2006b). Endogenous monoamine receptor activation is essential for enabling persistent sodium currents and repetitive firing in rat spinal motoneurons. Journal of Neurophysiology, 96, 1171– 1186.PubMedCrossRefGoogle Scholar
  27. Harvey, P. J., Li, X., Li, Y., & Bennett, D. J. (2006c). Persistent sodium currents and repetitive firing in motoneurons of the sacrocaudal spinal cord of adult rats. Journal of Neurophysiology, 96, 1141–1157.PubMedCrossRefGoogle Scholar
  28. Heckman, C. J., Gorassini, M. A., & Bennett, D. J. (2005) Persistent inward currents in motoneuron dendrites: Implications for motor output. Muscle Nerve, 31, 135–156.CrossRefGoogle Scholar
  29. Heckman, C. J., Johnson, M., Mottram, C., & Schuster, J. (2008). Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. The Neuroscientist, 14, 264–275.PubMedCrossRefGoogle Scholar
  30. Heckman, C. J., Lee, R. H., & Brownstone, R. M. (2003) Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior. Trends in Neurosciences, 26, 688–695.PubMedCrossRefGoogle Scholar
  31. Hille, B. (2001), Ion channels of excitable membranes (3rd ed.). Sunderland, MA: Sinauer Associates.Google Scholar
  32. Hochman, S., & McCrea, D. A. (1994). Effects of chronic spinalization on ankle extensor motoneurons. II Motoneuron electrical properties. Journal of Neurophysiology, 77, 1468–1479.Google Scholar
  33. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 4, 500–544.Google Scholar
  34. Hounsgaard, J., Hultborn, H., Jesperson, B., & Kiehn, O. (1988a). Bistability of α-motoneurons in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. Journal of Physiology, 405, 345–367.PubMedGoogle Scholar
  35. Hounsgaard, J., Kiehn, O., & Mintz, I. (1988b). Response properties of motoneurons in a slice preparation of the turtle spinal cord. Journal of Physiology, 398, 575–589.PubMedGoogle Scholar
  36. Hounsgaard, J., & Kiehn, O. (1989). Serotonin induced bistability of turtle motoneurons caused by nifedipine sensitive calcium plateau potential. Journal of Physiology, 414, 265–282.PubMedGoogle Scholar
  37. Hounsgaard, J., & Kiehn, O. (1993). Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. Journal of Physiology, 468, 245–259.PubMedGoogle Scholar
  38. Hultborn, H., Denton, M. E., Wienecke, J., & Nielsen, J. B. (2003). Variable amplification of synaptic input to cat spinal motoneurons by dendritic persistent inward current. Journal of Physiology, 552, 945–952.PubMedCrossRefGoogle Scholar
  39. Hultborn, H., & Kiehn, O. (1992). Neuromodulation of vertebrate motor neuron membrane properties. Current Opinion in Neurobiology, 2, 770–775.PubMedCrossRefGoogle Scholar
  40. Jaffe, D. B., & Carnevale, N. T. (1999). Passive normalization of synaptic integration influenced by dendritic architecture. Journal of Neurophysiology, 82, 3268–3285.PubMedGoogle Scholar
  41. Johnston, D., Magee, J. C., Colbert, C. M., & Cristie, B. R. (1997). Active properties of neuronal dendrites. Annual Review of Neuroscience, 19, 165–186.CrossRefGoogle Scholar
  42. Kitzman, P. (2005). Alteration in axial motoneuronal morphology in the spinal cord injured spastic rat. Experimental Neurology, 192(1), 100–108.CrossRefGoogle Scholar
  43. Kuo, J. J., Lee, R. H., Johnson, M. D., Heckman, H. M., & Heckman, C. J. (2003). Active dendritic integration of inhibitory synaptic inputs in vivo. Journal of Neurophysiology, 90, 3617–3624.PubMedCrossRefGoogle Scholar
  44. Lee, R. H., & Heckman, C. J. (1996). Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. Journal of Neurophysiology, 76, 2107–2110.PubMedGoogle Scholar
  45. Lee, R. H., & Heckman, C. J. (1998a). Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. Journal of Neurophysiology, 80, 585–593.Google Scholar
  46. Lee, R. H., & Heckman, C. J. (1998b). Bistability in spinal motoneurons in vivo: Systematic variations in rhythmic firing patterns. Journal of Neurophysiology, 80, 572–582.PubMedGoogle Scholar
  47. Lee, R. H., & Heckman, C. J. (2000). Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo. Journal of Neuroscience, 20, 6734–6740.PubMedGoogle Scholar
  48. Li, X., & Bennett, D. J. (2007). Apamin-sensitive calcium-activated potassium currents (SK) are activated by persistent calcium currents in rat motoneurons. Journal of Neurophysiology, 97, 3314–3330.PubMedCrossRefGoogle Scholar
  49. Li, X., Murray, K., Harvey, P. J., Ballou, E. W., & Bennett, D. J. (2007). Serotonin facilitates a persistent calcium current in motoneurons of rats with and without spinal cord injury. Journal of Neurophysiology, 97, 1236–1246.PubMedCrossRefGoogle Scholar
  50. Li, Y., & Bennett, D. J. (2003). Persistent sodium currents and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. Journal of Neurophysiology, 90(2), 857–869.PubMedCrossRefGoogle Scholar
  51. Li, Y., Gorassini, M. A., & Bennett, D. J. (2004). Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats. Journal of Neurophysiology, 91(2), 767–783.PubMedCrossRefGoogle Scholar
  52. Lynskey, J. V., Belanger, A., & Jung, R. (2008). Activity-dependent plasticity in spinal cord injury. Journal of Rehabilitation Research and Development, 42, 229–240.CrossRefGoogle Scholar
  53. Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model cortical neurons. Nature, 382, 363–366.PubMedCrossRefGoogle Scholar
  54. NINDS-NIH (2009). NINDS-NIH. Spasticity information page. http://www.ninds.nih.gov/disorders/spasticity/spastic%ity.htm.
  55. Perrier, J.-F., & Hounsgaard, J. (2003). Ca 2 + -activated nonselective cationic current (I CAN) in turtle motoneurons. Journal of Neurophysiology, 82, 730–735.Google Scholar
  56. Pinsky, P. F., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. Journal of Computational Neuroscience, 1, 39–60.PubMedCrossRefGoogle Scholar
  57. Powers, R. K., & Binder, M. D. (2000). Summation of effective synaptic currents and firing rate modulation in cat spinal motoneurons. Journal of Neurophysiology, 83, 483–500.PubMedGoogle Scholar
  58. Powers, R. K., & Binder, M. D. (2003). Persistent sodium and calcium currents in rat hypoglossal motoneurons. Journal of Neurophysiology, 89, 615–624.PubMedCrossRefGoogle Scholar
  59. Prather, J. F., Clark, B. D., & Cope, T. C. (2002). Firing rate modulation of motoneurons activated by cutaneous and muscle receptor afferents in the decerebrate cat. Journal of Neurophysiology, 88, 1867–1879.PubMedGoogle Scholar
  60. Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic input. Journal of Neurophysiology, 30, 1138–1168.PubMedGoogle Scholar
  61. Ramer, L. M., Ramer, M. S., & Steeves, J. D. (2005). Setting the stage for functional repair of spinal cord injuries: A cast of thousands. Spinal Cord, 43, 134–161.PubMedCrossRefGoogle Scholar
  62. Schwindt, P. C., & Crill, W. E. (1980). Role of a persistent inward current in motoneuron bursting during spinal seizures. Journal of Neurophysiology, 43, 1296–1318.PubMedGoogle Scholar
  63. Schwindt, P. C., & Crill, W. E. (1982). Factors influencing motoneuron rhythmic firing: results from a voltage–clamp study. Journal of Neurophysiology, 48, 875–890.PubMedGoogle Scholar
  64. Schwindt, P. C., & Crill, W. E. (1984). Membrane properties of cat spinal motoneurons. In R. Davidoff (Ed.), Handbook of the spinal cord (pp. 199–242). NY: Dekker.Google Scholar
  65. Segev, I., Fleshman, J. W., & Burke, R. E. (1990). Computer simulation of Group Ia EPSPs using morphologically realistic models of cat α-motoneurons. Journal of Neurophysiology, 64, 648–660.PubMedGoogle Scholar
  66. Segev, I., & London, M. (2000). Untangling dendrites with quantitative models. Science, 290, 744–750.PubMedCrossRefGoogle Scholar
  67. Shapiro, N. P., & Lee, R. H. (2007). Synaptic amplification versus bistability in motoneuron dendritic processing: A top-down modeling approach. Journal of Neurophysiology, 97, 3948–3960.PubMedCrossRefGoogle Scholar
  68. Stuart, G. J., & Redman, S. J. (1990). Voltage dependance of Ia reciprocal inhibitory currents in cat spinal motoneurons. Journal of Physiology, 420, 111–125.PubMedGoogle Scholar
  69. van Elburg, R. A. J., & van Ooyen, A. (2010). Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Computational Biology, 6, e1000781.PubMedCrossRefGoogle Scholar
  70. Vieira, M. F., & Kohn, A. F. (2007). Compartmental models of mammalian motoneurons of types S, FR and FF and their computer simulation. Computers in Biology and Medicine, 37, 842–860.PubMedCrossRefGoogle Scholar
  71. Zhang, L., & Krnjevic, K. (1987). Apamin depresses selectively the after-hyperpolarization of cat spinal motoneurons. Neuroscience Letters, 74, 58–62.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Mathematical and Statistical Sciences, Center for Adaptive Neural SystemsArizona State UniversityTempeUSA
  2. 2.School of Life Sciences, Center for Adaptive Neural SystemsArizona State UniversityTempeUSA
  3. 3.School of Biological and Health Systems Engineering, Center for Adaptive Neural SystemsArizona State UniversityTempeUSA

Personalised recommendations