Journal of Computational Neuroscience

, Volume 31, Issue 3, pp 581–594 | Cite as

Sequestration of CaMKII in dendritic spines in silico

  • Shahid KhanEmail author
  • Yixiao Zou
  • Asma Amjad
  • Ailia Gardezi
  • Carolyn L. Smith
  • Christine Winters
  • Thomas S. Reese


Calcium calmodulin dependent kinase II (CaMKII) is sequestered in dendritic spines within seconds upon synaptic stimulation. The program Smoldyn was used to develop scenarios of single molecule CaMKII diffusion and binding in virtual dendritic spines. We first validated simulation of diffusion as a function of spine morphology. Additional cellular structures were then incorporated to simulate binding of CaMKII to the post-synaptic density (PSD); binding to cytoskeleton; or their self-aggregation. The distributions of GFP tagged native and mutant constructs in dissociated hippocampal neurons were measured to guide quantitative analysis. Intra-spine viscosity was estimated from fluorescence recovery after photo-bleach (FRAP) of red fluorescent protein. Intra-spine mobility of the GFP-CaMKIIα constructs was measured, with hundred-millisecond or better time resolution, from FRAP of distal spine tips in conjunction with fluorescence loss (FLIP) from proximal regions. Different FRAP \ FLIP profiles were predicted from our Scenarios and provided a means to differentiate binding to the PSDs from self-aggregation. The predictions were validated by experiments. Simulated fits of the Scenarios provided estimates of binding and rate constants. We utilized these values to assess the role of self-aggregation during the initial response of native CaMKII holoenzymes to stimulation. The computations revealed that self-aggregation could provide a concentration-dependent switch to amplify CaMKII sequestration and regulate its activity depending on its occupancy of the actin cytoskeleton.


Smoldyn Hippocampal cultures FRAP Protein self-aggregation 



We thank Steven Andrews for advice on Smoldyn and Ayse Dosemeci for comments on the manuscript. This work was supported by grant R01-GM49319 from the National Institutes of Health (to SK). YZ was an NIH summer student intern. AA was supported by start-up funds (to SK) from the School of Science & Engineering, LUMS.

Supplementary material

10827_2011_323_MOESM1_ESM.doc (72 kb)
ESM 1 (DOC 71 kb)
Movie 1

(MPG 7232 kb)

Movie 2

(MPG 6368 kb)


  1. Andrews, S. S. (2009). Accurate particle-based simulation of adsorption, desorption and partial transmission. Physical Biology, 6, 046015.PubMedCrossRefGoogle Scholar
  2. Andrews, S. S., Addy, N. J., Brent, R., & Arkin, A. P. (2010). Detailed simulations of cell biology with Smoldyn 2.1. PLoS Computational Biology, 6, e1000705.PubMedCrossRefGoogle Scholar
  3. Andrews, S. S., & Bray, D. (2004). Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Physical Biology, 1, 137–151.PubMedCrossRefGoogle Scholar
  4. Bayer, K. U., De Koninck, P., Leonard, A. S., Hell, J. W., & Schulman, H. (2001). Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature, 411, 801–805.PubMedCrossRefGoogle Scholar
  5. Bayer, K. U., LeBel, E., McDonald, G. L., O’Leary, H., Schulman, H., & De Koninck, P. (2006). Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. The Journal of Neuroscience, 26, 1164–1174.PubMedCrossRefGoogle Scholar
  6. Beyer, H. (1985). Handbuch der Mikroskopie (2nd ed.). Berlin: VEB Verlag Technik.Google Scholar
  7. Bhalla, U. S. (2004). Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophysical Journal, 87, 745–753.PubMedCrossRefGoogle Scholar
  8. Block, S. M., Segall, J. E., & Berg, H. C. (1982). Impulse responses in bacterial chemotaxis. Cell, 31, 215–226.PubMedCrossRefGoogle Scholar
  9. Bloodgood, B. L., & Sabatini, B. L. (2005). Neuronal activity regulates diffusion across the neck of dendritic spines. Science, 310, 866–869.PubMedCrossRefGoogle Scholar
  10. Bloodgood, B. L., & Sabatini, B. L. (2007). Ca(2+) signaling in dendritic spines. Current Opinion in Neurobiology, 17, 345–351.PubMedCrossRefGoogle Scholar
  11. Byrne, M. J., Putkey, J. A., Waxham, M. N., & Kubota, Y. (2009). Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model. Journal of Computational Neuroscience, 27, 621–638.PubMedCrossRefGoogle Scholar
  12. Chen, X., Vinade, L., Leapman, R. D., Petersen, J. D., Nakagawa, T., Phillips, T. M., et al. (2005). Mass of the postsynaptic density and enumeration of three key molecules. Proceedings of the National Academy of Sciences of the United States of America, 102, 11551–11556.PubMedCrossRefGoogle Scholar
  13. DePristo, M. A., Chang, L., Vale, R. D., Khan, S. M., & Lipkow, K. (2009). Introducing simulated cellular architecture to the quantitative analysis of fluorescent microscopy. Progress in Biophysics and Molecular Biology, 100, 25–32.PubMedCrossRefGoogle Scholar
  14. Dosemeci, A., Tao-Cheng, J. H., Vinade, L., Winters, C. A., Pozzo-Miller, L., & Reese, T. S. (2001). Glutamate-induced transient modification of the postsynaptic density. Proceedings of the National Academy of Sciences of the United States of America, 98, 10428–10432.PubMedCrossRefGoogle Scholar
  15. Erhard, F., Friedel, C. C., & Zimmer, R. (2008). FERN - a Java framework for stochastic simulation and evaluation of reaction networks. BMC Bioinformatics, 9, 356.PubMedCrossRefGoogle Scholar
  16. Eshhar, N., Petralia, R. S., Winters, C. A., Niedzielski, A. S., & Wenthold, R. J. (1993). The segregation and expression of glutamate receptor subunits in cultured hippocampal neurons. Neuroscience, 57, 943–964.PubMedCrossRefGoogle Scholar
  17. Garcia de la Torre, J. G., & Bloomfield, V. A. (1981). Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Quarterly Reviews of Biophysics, 14, 81–139.PubMedCrossRefGoogle Scholar
  18. Grant, P. A., Best, S. L., Sanmugalingam, N., Alessio, R., Jama, A. M., & Torok, K. (2008). A two-state model for Ca2+/CaM-dependent protein kinase II (alphaCaMKII) in response to persistent Ca2+ stimulation in hippocampal neurons. Cell Calcium, 44, 465–478.PubMedCrossRefGoogle Scholar
  19. Hudmon, A., Lebel, E., Roy, H., Sik, A., Schulman, H., Waxham, M. N., et al. (2005). A mechanism for Ca2+/calmodulin-dependent protein kinase II clustering at synaptic and nonsynaptic sites based on self-association. The Journal of Neuroscience, 25, 6971–6983.PubMedCrossRefGoogle Scholar
  20. Kaech, S., Brinkhaus, H., & Matus, A. (1999). Volatile anesthetics block actin-based motility in dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 96, 10433–10437.PubMedCrossRefGoogle Scholar
  21. Kuriu, T., Inoue, A., Bito, H., Sobue, K., & Okabe, S. (2006). Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. The Journal of Neuroscience, 26, 7693–7706.PubMedCrossRefGoogle Scholar
  22. Landis, D. M., & Reese, T. S. (1983). Cytoplasmic organization in cerebellar dendritic spines. The Journal of Cell Biology, 97, 1169–1178.PubMedCrossRefGoogle Scholar
  23. Levine, C. G., Mitra, D., Sharma, A., Smith, C. L., & Hegde, R. S. (2005). The efficiency of protein compartmentalization into the secretory pathway. Molecular Biology of the Cell, 16, 279–291.PubMedCrossRefGoogle Scholar
  24. Lisman, J., Lichtman, J. W., & Sanes, J. R. (2003). LTP: perils and progress. Nature Reviews. Neuroscience, 4, 926–929.PubMedCrossRefGoogle Scholar
  25. Lisman, J. E., Raghavachari, S., & Tsien, R. W. (2007). The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nature Reviews. Neuroscience, 8, 597–609.PubMedCrossRefGoogle Scholar
  26. Lu, Z., McLaren, R. S., Winters, C. A., & Ralston, E. (1998). Ribosome association contributes to restricting mRNAs to the cell body of hippocampal neurons. Molecular and Cellular Neurosciences, 12, 363–375.PubMedCrossRefGoogle Scholar
  27. Lucic, V., Greif, G. J., & Kennedy, M. B. (2008). Detailed state model of CaMKII activation and autophosphorylation. European Biophysics Journal, 38, 83–98.PubMedCrossRefGoogle Scholar
  28. Matus, A., Ackermann, M., Pehling, G., Byers, H. R., & Fujiwara, K. (1982). High actin concentrations in brain dendritic spines and postsynaptic densities. Proceedings of the National Academy of Sciences of the United States of America, 79, 7590–7594.PubMedCrossRefGoogle Scholar
  29. Noguchi, J., Matsuzaki, M., Ellis-Davies, G. C., & Kasai, H. (2005). Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron, 46, 609–622.PubMedCrossRefGoogle Scholar
  30. Novak, I. L., Kraikivski, P., & Slepchenko, B. M. (2009). Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures. Biophysical Journal, 97, 758–767.PubMedCrossRefGoogle Scholar
  31. Okabe, S. (2007). Molecular anatomy of the postsynaptic density. Molecular and Cellular Neurosciences, 34, 503–518.PubMedCrossRefGoogle Scholar
  32. Okamoto, K., Nagai, T., Miyawaki, A., & Hayashi, Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nature Neuroscience, 7, 1104–1112.PubMedCrossRefGoogle Scholar
  33. Okamoto, K., Narayanan, R., Lee, S. H., Murata, K., & Hayashi, Y. (2007). The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proceedings of the National Academy of Sciences of the United States of America, 104, 6418–6423.PubMedCrossRefGoogle Scholar
  34. Oliveira, R. F., Terrin, A., Di Benedetto, G., Cannon, R. C., Koh, W., Kim, M., et al. (2010). The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS ONE, 5, e11725.PubMedCrossRefGoogle Scholar
  35. Otmakhov, N., Tao-Cheng, J. H., Carpenter, S., Asrican, B., Dosemeci, A., Reese, T. S., et al. (2004). Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. The Journal of Neuroscience, 24, 9324–9331.PubMedCrossRefGoogle Scholar
  36. Petersen, J. D., Chen, X., Vinade, L., Dosemeci, A., Lisman, J. E., & Reese, T. S. (2003). Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. The Journal of Neuroscience, 23, 11270–11278.PubMedGoogle Scholar
  37. Ridgway, D., Broderick, G., Lopez-Campistrous, A., Ru’aini, M., Winter, P., Hamilton, M., et al. (2008). Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. Biophysical Journal, 94, 3748–3759.PubMedCrossRefGoogle Scholar
  38. Sanabria, H., Kubota, Y., & Waxham, M. N. (2007). Multiple diffusion mechanisms due to nanostructuring in crowded environments. Biophysical Journal, 92, 313–322.PubMedCrossRefGoogle Scholar
  39. Sanabria, H., Swulius, M. T., Kolodziej, S. J., Liu, J., & Waxham, M. N. (2009). {beta}CaMKII regulates actin assembly and structure. The Journal of Biological Chemistry, 284, 9770–9780.PubMedCrossRefGoogle Scholar
  40. Santamaria, F., Wils, S., De Schutter, E., & Augustine, G. J. (2006). Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron, 52, 635–648.PubMedCrossRefGoogle Scholar
  41. Sharma, K., Fong, D. K., & Craig, A. M. (2006). Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Molecular and Cellular Neurosciences, 31, 702–712.PubMedCrossRefGoogle Scholar
  42. Shen, K., & Meyer, T. (1999). Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science, 284, 162–166.PubMedCrossRefGoogle Scholar
  43. Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., & Meyer, T. (2000). Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II. Nature Neuroscience, 3, 881–886.PubMedCrossRefGoogle Scholar
  44. Shen, K., Teruel, M. N., Subramanian, K., & Meyer, T. (1998). CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron, 21, 593–606.PubMedCrossRefGoogle Scholar
  45. Sheng, M., & Hoogenraad, C. C. (2007). The postsynaptic architecture of excitatory synapses: a more quantitative view. Annual Review of Biochemistry, 76, 823–847.PubMedCrossRefGoogle Scholar
  46. Smith, B. A., Roy, H., De Koninck, P., Grutter, P., & De Koninck, Y. (2007). Dendritic spine viscoelasticity and soft-glassy nature: balancing dynamic remodeling with structural stability. Biophysical Journal, 92, 1419–1430.PubMedCrossRefGoogle Scholar
  47. Snapp, E. L., Sharma, A., Lippincott-Schwartz, J., & Hegde, R. S. (2006). Monitoring chaperone engagement of substrates in the endoplasmic reticulum of live cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 6536–6541.PubMedCrossRefGoogle Scholar
  48. Sprague, B. L., & McNally, J. G. (2005). FRAP analysis of binding: proper and fitting. Trends in Cell Biology, 15, 84–91.PubMedCrossRefGoogle Scholar
  49. Sprague, B. L., Muller, F., Pego, R. L., Bungay, P. M., Stavreva, D. A., & McNally, J. G. (2006). Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching. Biophysical Journal, 91, 1169–1191.PubMedCrossRefGoogle Scholar
  50. Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.PubMedCrossRefGoogle Scholar
  51. Swaminathan, R., Hoang, C. P., & Verkman, A. S. (1997). Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophysical Journal, 72, 1900–1907.PubMedCrossRefGoogle Scholar
  52. Tang, S. J., & Schuman, E. M. (2002). Protein synthesis in the dendrite. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 521–529.PubMedCrossRefGoogle Scholar
  53. Walikonis, R. S., Oguni, A., Khorosheva, E. M., Jeng, C. J., Asuncion, F. J., & Kennedy, M. B. (2001). Densin-180 forms a ternary complex with the (alpha)-subunit of Ca2+/calmodulin-dependent protein kinase II and (alpha)-actinin. The Journal of Neuroscience, 21, 423–433.PubMedGoogle Scholar
  54. Weiss, M. (2004). Challenges and artifacts in quantitative photobleaching experiments. Traffic (Copenhagen, Denmark), 5, 662–671.CrossRefGoogle Scholar
  55. Zhabotinsky, A. M., Camp, R. N., Epstein, I. R., & Lisman, J. E. (2006). Role of the neurogranin concentrated in spines in the induction of long-term potentiation. The Journal of Neuroscience, 26, 7337–7347.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2011

Authors and Affiliations

  • Shahid Khan
    • 1
    • 2
    • 3
    Email author
  • Yixiao Zou
    • 1
  • Asma Amjad
    • 3
  • Ailia Gardezi
    • 3
  • Carolyn L. Smith
    • 1
  • Christine Winters
    • 1
  • Thomas S. Reese
    • 1
  1. 1.Laboratory of NeurobiologyNational Institute of Neurological Diseases & StrokeBethesdaUSA
  2. 2.Molecular Biology ConsortiumChicagoUSA
  3. 3.LUMS-School of Science & EngineeringLahorePakistan

Personalised recommendations