# Responses of a bursting pacemaker to excitation reveal spatial segregation between bursting and spiking mechanisms

## Abstract

Central pattern generators (CPGs) frequently include bursting neurons that serve as pacemakers for rhythm generation. Phase resetting curves (PRCs) can provide insight into mechanisms underlying phase locking in such circuits. PRCs were constructed for a pacemaker bursting complex in the pyloric circuit in the stomatogastric ganglion of the lobster and crab. This complex is comprised of the Anterior Burster (AB) neuron and two Pyloric Dilator (PD) neurons that are all electrically coupled. Artificial excitatory synaptic conductance pulses of different strengths and durations were injected into one of the AB or PD somata using the Dynamic Clamp. Previously, we characterized the inhibitory PRCs by assuming a single slow process that enabled synaptic inputs to trigger switches between an up state in which spiking occurs and a down state in which it does not. Excitation produced five different PRC shapes, which could not be explained with such a simple model. A separate dendritic compartment was required to separate the mechanism that generates the up and down phases of the bursting envelope (1) from synaptic inputs applied at the soma, (2) from axonal spike generation and (3) from a slow process with a slower time scale than burst generation. This study reveals that due to the nonlinear properties and compartmentalization of ionic channels, the response to excitation is more complex than inhibition.

## Keywords

Central pattern generator Dynamic clamp Phase response curve Phase locking Stomatogastric ganglion## Notes

### Acknowledgements

This work was supported by NIH grant NS054281 under the CRCNS program. We thank Ryan Hooper for supplying some of the PRCs and Rob Butera for comments on an earlier draft.

## Supplementary material

## References

- Abbott, L. F., Marder, E., & Hooper, S. L. (1991). Oscillating networks: control of burst duration by electrically coupled neurons.
*Neural Computation, 3*, 487–497.CrossRefGoogle Scholar - Arshavsky, Y. I., Deliagina, T. G., Orlovsky, G. N., & Panchin, Y. V. (1989). Control of feeding movements in the pteropod mollusk, clione-limacina.
*Experimental Brain Research, 78*, 387–397.Google Scholar - Arshavsky, Y. I., Grillner, S., Orlovsky, G. N., & Panchin, Y. V. (1991). Central generators and the spatiotemporal pattern of movements. In J. Fagard & P. H. Wolff (Eds.),
*The development of timing control and temporal organization in coordinated action: Invariant relative timing, rhythms, and coordination*(pp. 93–115). Amsterdam: Elsevier.CrossRefGoogle Scholar - Ayers, J. L., & Selverston, A. I. (1979). Monosynaptic entrainment of an endogenous pacemaker network: a cellular mechanism for von Holst's magnet effect.
*Journal of Comparative Physiology, 129*, 5–17.CrossRefGoogle Scholar - Benson, J. A. (1980). Burst reset and frequency control of the neuronal oscillators in the cardiac ganglion of the crab, Portunus sanguinolentus.
*The Journal of Experimental Biology, 87*, 285–313.PubMedGoogle Scholar - Bucher, D., Johnson, C. D., & Marder, E. (2007). Neuronal morphology and neuropil structure in the stomatogastric ganglion of the lobster, Homarus americanus.
*The Journal of Comparative Neurology, 501*(2), 185–205.PubMedCrossRefGoogle Scholar - Calabrese, R. L., & Peterson, E. L. (1983). Neural control of heartbeat in the leech,
*hirudo medicinalis*. In A. Roberts & B. Roberts (Eds.),*Neural origin of rhythmic movements*(pp. 195–221). Cambridge: Cambridge Univ. Press.Google Scholar - Canavier, C. C., & Achuthan, S. A. (2010). Pulse coupled oscillators and the phase resetting curve.
*Mathematical Biosciences, 226*, 77–96. [Epub ahead of print] PMID: 20460132.PubMedCrossRefGoogle Scholar - Cangiano, L., & Grillner, S. (2005). Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord.
*The Journal of Neuroscience, 25*, 923–935.PubMedCrossRefGoogle Scholar - Cheng, J., Stein, R. B., Jovanovic, K., Yoshida, K., Bennett, D. J., & Han, Y. (1998). Identification, localization, and modulation of neural networks for walking in the mudpuppy (necturus maculatus) spinal cord.
*The Journal of Neuroscience, 18*, 4295–4304.PubMedGoogle Scholar - Dando, M. R., & Selverston, A. I. (1972). Command fibres from the supra-oesophageal ganglion to the stomatogastric ganglion in
*Panulirus argus*.*Journal of Comparative Physiology, 78*, 138–175.CrossRefGoogle Scholar - Demir S. S., Butera, R. J. Jr., DeFranceschi A. A., Clark, J. W. Jr., & Byrne J. H. (1997). Phase Sensitivity and Entrainment in a Modeled Bursting Neuron.
*Biophysical Journal, 72*, 579–594.Google Scholar - Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells.
*Annals of Biomedical Engineering, 29*, 897–907.PubMedCrossRefGoogle Scholar - Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in coupled neural oscillators.
*Journal of Mathematical Biology, 29*(3), 195–217.CrossRefGoogle Scholar - Glass, L., & Winfree, A. T. (1984). Discontinuities in phase resetting experiments.
*The American Journal of Physiology, 246*(Regulatory Integrative Comp. Physiol. 15), R251–R258.PubMedGoogle Scholar - Goldberg, J. A., Deister, C. A., & Wilson, C. J. (2007). Response properties and synchronization of rhythmically firing dendritic neurons.
*Journal of Neurophysiology, 97*(1), 208–219. Epub 2006 Sep 6.PubMedCrossRefGoogle Scholar - Guckenheimer, J., Gueron, S., & Harris-Warrick, R. M. (1993). Mapping the dynamics of a bursting neuron.
*Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 341*, 345–359.PubMedCrossRefGoogle Scholar - Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments.
*Trends in Neurosciences, 30*, 357–364.PubMedCrossRefGoogle Scholar - Hartline, D. K. (1979). Pattern generation in the lobster (panulirus) stomatogastric ganglion. II. Pyloric network simulation.
*Biological Cybernetics, 33*, 223–236.PubMedCrossRefGoogle Scholar - Hartline, D. K., & Gassie, D. V. (1979). Pattern generation in the lobster (panulirus) stomatogastric ganglion.I. Pyloric neuron kinetics and synaptic interactions.
*Biological Cybernetics, 33*, 209–222.PubMedCrossRefGoogle Scholar - Hooper, S. L., Buchman, E., Weaver, A. L., Thuma, J. B., & Hobbs, K. H. (2009). Slow conductances could underlie intrinsic phase-maintaining properties of isolated lobster (Panulirus interruptus) pyloric neurons.
*The Journal of Neuroscience, 29*, 1834–1845.PubMedCrossRefGoogle Scholar - Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations.
*Trends in Neurosciences, 30*, 350–356.PubMedCrossRefGoogle Scholar - Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation.
*Physiological Reviews, 76*, 687–717.PubMedGoogle Scholar - McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation.
*Brain Research Reviews, 57*, 134–146.PubMedCrossRefGoogle Scholar - Miller, J. P., & Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons.
*Journal of Neurophysiology, 48*, 1378–1391.PubMedGoogle Scholar - Nargeot, R., Baxter, D. A., & Byrne, J. H. (1997). Contingent-dependent enhancement of rhythmic motor patterns: an
*in vitro*analog of operant conditioning.*The Journal of Neuroscience, 17*, 8093–8105.PubMedGoogle Scholar - Nargeot, R., Petrissans, C., & Simmers, J. (2007). Behavioral and
*in vitro*correlates of compulsive-like food seeking induced by operant conditioning in Aplysia.*The Journal of Neuroscience, 27*, 8059–8070.PubMedCrossRefGoogle Scholar - Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs.
*Journal of Computational Neuroscience, 18*(3), 287–295.PubMedCrossRefGoogle Scholar - Oprisan, S. A., Thirumalai, V., & Canavier, C. C. (2003). Dynamics from a time series: can we extract the phase resetting curve from a time series?
*Biophysical Journal, 84*, 2919–2928.PubMedCrossRefGoogle Scholar - Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron.
*Biophysical Journal, 87*, 2283–2298.PubMedCrossRefGoogle Scholar - Preyer, A. J., & Butera, R. J. (2005). Neuronal oscillators in
*aplysia californica*that demonstrate weak coupling*in vitro*.*Physical Review Letters, 95*(13), 138103.PubMedCrossRefGoogle Scholar - Prinz, A. A., Billimoria, C. P., & Marder, E. (2003a). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons.
*Journal of Neurophysiology, 90*, 3998–4015.CrossRefGoogle Scholar - Prinz, A. A., Thirumalai, V., & Marder, E. (2003b). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons.
*The Journal of Neuroscience, 23*, 943–954.Google Scholar - Prinz, A. A., Abbott, L. F., & Marder, E. (2004). The dynamic clamp comes of age.
*Trends in Neurosciences, 27*, 218–224.PubMedCrossRefGoogle Scholar - Rinzel, J., & Ermentrout, B. (1989). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.),
*Methods in neuronal modelling: From synapses to networks"*. Cambridge: MIT. revised 1998.Google Scholar - Schultheiss, N. W., Edgerton, J. R., & Jaeger, D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration.
*The Journal of Neuroscience, 30*(7), 2767–2782.PubMedCrossRefGoogle Scholar - Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993a). Dynamic Clamp: computer-generated conductances in real neurons.
*Journal of Neurophysiology, 69*, 992–995.PubMedGoogle Scholar - Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993b). The dynamic clamp—Artificial conductances in biological neurons.
*Trends in Neurosciences, 16*, 389–394.PubMedCrossRefGoogle Scholar - Sieling, F. H., Canavier, C. C., Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern generating networks as reliably as inhibition.
*J Neurophysiol*,*102*, 69–84. First published doi: 10.1152/jn.00091.2009.Google Scholar - Soto-Treviño, C., Rabbah, P., Marder, E., & Nadim, F. (2005). Computational model of electrically coupled, intrinsically distinct pacemaker neuron.
*Journal of Neurophysiology, 94*, 590–604.PubMedCrossRefGoogle Scholar - Stein, S. G., Grillner, S., Selverston, A. I., & Stuart, D. G., (Eds). (1997).
*Neurons, networks, and motor behavior.*MIT.Google Scholar - Tazaki, K., & Cooke, I. M. (1990). Characterization of Ca current underlying burst formation in lobster cardiac ganglion motorneurons.
*Journal of Neurophysiology, 63*, 370–384.PubMedGoogle Scholar - Tohidi, V., & Nadim, F. (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency.
*The Journal of Neuroscience, 29*, 6427–6435.PubMedCrossRefGoogle Scholar - Traub, R. D., & Jefferys, J. G. (1994). Are there unifying principles underlying the generation of epileptic afterdischarges
*in vitro*?*Progress in Brain Research, 102*, 383–394.PubMedCrossRefGoogle Scholar - Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons.
*Science, 264*(5161), 974–977.PubMedCrossRefGoogle Scholar - Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons.
*Journal of Neuroscience, 15*(5 Pt 1), 3640–3652.PubMedGoogle Scholar - Winfree, A. T. (1980).
*The geometry of biological time*. New York: Springer.Google Scholar