Journal of Computational Neuroscience

, Volume 31, Issue 2, pp 385–400 | Cite as

Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling

  • Sherry-Ann Brown
  • Ion I. Moraru
  • James C. Schaff
  • Leslie M. LoewEmail author


Because of its highly branched dendrite, the Purkinje neuron requires significant computational resources if coupled electrical and biochemical activity are to be simulated. To address this challenge, we developed a scheme for reducing the geometric complexity; while preserving the essential features of activity in both the soma and a remote dendritic spine. We merged our previously published biochemical model of calcium dynamics and lipid signaling in the Purkinje neuron, developed in the Virtual Cell modeling and simulation environment, with an electrophysiological model based on a Purkinje neuron model available in NEURON. A novel reduction method was applied to the Purkinje neuron geometry to obtain a model with fewer compartments that is tractable in Virtual Cell. Most of the dendritic tree was subject to reduction, but we retained the neuron’s explicit electrical and geometric features along a specified path from spine to soma. Further, unlike previous simplification methods, the dendrites that branch off along the preserved explicit path are retained as reduced branches. We conserved axial resistivity and adjusted passive properties and active channel conductances for the reduction in surface area, and cytosolic calcium for the reduction in volume. Rallpacks are used to validate the reduction algorithm and show that it can be generalized to other complex neuronal geometries. For the Purkinje cell, we found that current injections at the soma were able to produce similar trains of action potentials and membrane potential propagation in the full and reduced models in NEURON; the reduced model produces identical spiking patterns in NEURON and Virtual Cell. Importantly, our reduced model can simulate communication between the soma and a distal spine; an alpha function applied at the spine to represent synaptic stimulation gave similar results in the full and reduced models for potential changes associated with both the spine and the soma. Finally, we combined phosphoinositol signaling and electrophysiology in the reduced model in Virtual Cell. Thus, a strategy has been developed to combine electrophysiology and biochemistry as a step toward merging neuronal and systems biology modeling.


Virtual Cell NEURON Model reduction Compartmental modeling Biochemical simulation Electrophysiology modeling 



We thank Fei Gao and Anuradha Lakshminarayana for help and support in various aspects of this work. We are also pleased to acknowledge Dr. Corey Acker, Dr. James Watras, Dr. Ann Cowan, and other members of the R. D. Berlin Center for Cell Analysis & Modeling at the University of Connecticut Health Center for helpful discussions.

This research was supported by grants R01 MH086638, P41 RR013186 and U54 RR022232 from the National Institutes of Health.

Supplementary material

10827_2011_317_MOESM1_ESM.pdf (126 kb)
ESM 1 (PDF 125 kb)
10827_2011_317_MOESM2_ESM.pdf (1.2 mb)
ESM 2 (PDF 1267 kb)
10827_2011_317_MOESM3_ESM.hoc (0 kb)
ESM 3 (HOC 0 kb)
10827_2011_317_MOESM4_ESM.hoc (0 kb)
ESM 4 (HOC 0 kb)
10827_2011_317_MOESM5_ESM.hoc (94 kb)
ESM 5 (HOC 93 kb)
10827_2011_317_MOESM6_ESM.hoc (4 kb)
ESM 6 (HOC 4 kb) (2 kb)
ESM 7 (SES 2 kb)
10827_2011_317_MOESM8_ESM.xls (316 kb)
ESM 8 (XLS 316 kb)
10827_2011_317_MOESM9_ESM.vcml (2.1 mb)
ESM 9 (VCML 2167 kb)


  1. Berridge, M., Lipp, P., & Bootman, M. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1, 11–21.PubMedCrossRefGoogle Scholar
  2. Bhalla, U., Bilitch, D., & Bower, J. (1992). Rallpacks: a set of benchmarks for neuronal simulators. Trends in Neurosciences, 15, 453–458.PubMedCrossRefGoogle Scholar
  3. Booth, V., Rinzel, J., & Kiehn, O. (1997). Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol, 78, 3371–3385.Google Scholar
  4. Bower, J. M. & Beeman, D. (2003) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System (Free Internet Version). New York, New York: Springer-Verlag.Google Scholar
  5. Bower, J., & Beeman, D. (2007). Constructing realistic neural simulations with GENESIS. Methods Mol Biol, 401, 103–125.PubMedCrossRefGoogle Scholar
  6. Brown, S., Morgan, F., Watras, J., & Loew, L. M. (2008). Analysis of phosphatidylinositol-4, 5-bisphosphate signaling in cerebellar Purkinje spines. Biophysical Journal, 95, 1795–1812.PubMedCrossRefGoogle Scholar
  7. Burke, R., Fyffe, R., & Moschovakis, A. (1994). Electrotonic architecture of cat gamma motoneurons. J Neurophysiol, 72, 2302–2316.PubMedGoogle Scholar
  8. Bush, P., & Sejnowski, T. (1993). Reduced compartmental models of neocortical pyramidal cells. J Neurosci Methods, 46, 159–166.PubMedCrossRefGoogle Scholar
  9. Clements, J., & Redman, S. (1989). Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol, 409, 63–87.Google Scholar
  10. De Schutter, E., & Bower, J. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of Neurophysiology, 71, 375–400.PubMedGoogle Scholar
  11. De Smedt, H., Missiaen, L., Parys, J., Henning, R., Sienaert, I., Vanlingen, S., et al. (1997). Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. The Biochemical Journal, 322(Pt 2), 575–583.PubMedGoogle Scholar
  12. Destexhe, A., Babloyantz, A., & Sejnowski, T. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, 65, 1538–1552.PubMedCrossRefGoogle Scholar
  13. Di Gregorio, E., Orsi, L., Godani, M., Vaula, G., Jensen, S., Salmon, E., et al. (2010) Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum.Google Scholar
  14. Douglas, R., & Martin, K. (1993). Exploring cortical microcircuits: A combined anatomical, physiological, and computational approach. In T. McKenna et al. (Eds.), Single neuron computation (pp. 381–412). Orlando, FL: Academic Press.Google Scholar
  15. Finch, E., & Augustine, G. (1998). Local calcium signalling by inositol-1, 4, 5-trisphosphate in Purkinje cell dendrites. Nature, 396, 753–756.PubMedCrossRefGoogle Scholar
  16. Fleshman, J., Segev, I., & Burke, R. (1988). Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol, 60, 60–85.Google Scholar
  17. Gilbert, P., & Thach, W. (1977). Purkinje cell activity during motor learning. Brain Research, 128, 309–328.PubMedCrossRefGoogle Scholar
  18. Hara, K., Shiga, A., Nozaki, H., Mitsui, J., Takahashi, Y., Ishiguro, H., et al. (2008). Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology, 71, 547–551.PubMedCrossRefGoogle Scholar
  19. Harris, K., & Stevens, J. (1988). Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. The Journal of Neuroscience, 8, 4455–4469.PubMedGoogle Scholar
  20. Hendrickson, E., Edgerton, J., & Jaeger, D. (2010). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. J Comput Neurosci. Google Scholar
  21. Hernjak, N., Slepchenko, B. M., Fernald, K., Fink, C. C., Fortin, D., Moraru, I. I., et al. (2005). Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar purkinje cells. Biophysical Journal, 89, 3790–3806.PubMedCrossRefGoogle Scholar
  22. Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRefGoogle Scholar
  23. Hines, M. L., & Carnevale, N. T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–135.PubMedCrossRefGoogle Scholar
  24. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMedGoogle Scholar
  25. Ito, M., & Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258.PubMedCrossRefGoogle Scholar
  26. Iwaki, A., Kawano, Y., Miura, S., Shibata, H., Matsuse, D., Li, W., et al. (2008). Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. Journal of Medical Genetics, 45, 32–35.PubMedCrossRefGoogle Scholar
  27. Konnerth, A., Dreessen, J., & Augustine, G. (1992). Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 89, 7051–7055.PubMedCrossRefGoogle Scholar
  28. Loew, L., & Schaff, J. (2001). The virtual cell: a software environment for computational cell biology. Trends in Biotechnology, 19, 401–406.PubMedCrossRefGoogle Scholar
  29. Major, G., Larkman, A., Jonas, P., Sakmann, B., & Jack, J. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.PubMedGoogle Scholar
  30. Manor, Y., Gonczarowski, J., & Segev, I. (1991). Propagation of action potentials along complex axonal trees. Model and implementation. Biophys J, 60, 1411–1423.PubMedCrossRefGoogle Scholar
  31. Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., et al. (1996). Ataxia and epileptic seizures in mice lacking type 1 inositol 1, 4, 5-trisphosphate receptor. Nature, 379, 168–171.PubMedCrossRefGoogle Scholar
  32. McCormick, D., & Huguenard, J. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol, 68, 1384–1400.Google Scholar
  33. Miyasho, T., Takagi, H., Suzuki, H., Watanabe, S., Inoue, M., Kudo, Y., et al. (2001). Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Research, 891, 106–115.PubMedCrossRefGoogle Scholar
  34. Moraru, I. I., Schaff, J. C., Slepchenko, B. M., & Loew, L. M. (2002). The virtual cell: an integrated modeling environment for experimental and computational cell biology. Annals of the New York Academy of Sciences, 971, 595–596.PubMedCrossRefGoogle Scholar
  35. Napper, R., & Harvey, R. (1988a). Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. The Journal of Comparative Neurology, 274, 168–177.PubMedCrossRefGoogle Scholar
  36. Napper, R., & Harvey, R. (1988b). Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum. The Journal of Comparative Neurology, 274, 158–167.PubMedCrossRefGoogle Scholar
  37. Ogura, H., Matsumoto, M., & Mikoshiba, K. (2001). Motor discoordination in mutant mice heterozygous for the type 1 inositol 1, 4, 5-trisphosphate receptor. Behavioural Brain Research, 122, 215–219.PubMedCrossRefGoogle Scholar
  38. Pinsky, P., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci, 1, 39–60.Google Scholar
  39. RALL, W. (1962). Electrophysiology of a dendritic neuron model. Biophysical Journal, 2, 145–167.PubMedCrossRefGoogle Scholar
  40. Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal, 9, 1483–1508.Google Scholar
  41. Rall, W., Rinzel, J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J, 13, 648–687.Google Scholar
  42. Rall, W., & Agmon-Snir, H. (1998). Cable theory for dendritic neurons. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks. Cambridge: MIT.Google Scholar
  43. Rapp, M., Yarom, Y., & Segev, I. (1992). The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Computation, 4, 518–533.Google Scholar
  44. Rapp, M., Segev, I., & Yarom, Y. (1994). Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje-cells. Journal of Physiology, London, 474, 101–118.Google Scholar
  45. Regehr, W., & Mintz, I. (1994). Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron, 12, 605–613.PubMedCrossRefGoogle Scholar
  46. Rinzel, J., & Rall, W. (1974). Transient response in a dendritic neuron model for current injected at one branch. Biophys J, 14, 759–790.PubMedCrossRefGoogle Scholar
  47. Sarkisov, D., & Wang, S. (2008). Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. The Journal of Neuroscience, 28, 133–142.PubMedCrossRefGoogle Scholar
  48. Schaff, J., Fink, C., Slepchenko, B., Carson, J., & Loew, L. (1997). A general computational framework for modeling cellular structure and function. Biophysical Journal, 73, 1135–1146.PubMedCrossRefGoogle Scholar
  49. Shelton, D. (1985). Membrane resistivity estimated for the Purkinje neuron by means of a passive computer model. Neuroscience, 14, 111–131.PubMedCrossRefGoogle Scholar
  50. Stratford, K., Mason, A., Larkman, A., Major, G., Jack, J. (1989). The modelling of pyramidal neurones in the visual cortex. In: The Computing Neuron (Durbin, R. et al., eds), pp 296-321 London, England: Addison-Wesley.Google Scholar
  51. Street, V., Bosma, M., Demas, V., Regan, M., Lin, D., Robinson, L., et al. (1997). The type 1 inositol 1, 4, 5-trisphosphate receptor gene is altered in the opisthotonos mouse. The Journal of Neuroscience, 17, 635–645.PubMedGoogle Scholar
  52. Takechi, H., Eilers, J., & Konnerth, A. (1998). A new class of synaptic response involving calcium release in dendritic spines. Nature, 396, 757–760.PubMedCrossRefGoogle Scholar
  53. Traub, R., Wong, R., Miles, R., Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol, 66, 635–650.Google Scholar
  54. van de Leemput, J., Chandran, J., Knight, M., Holtzclaw, L., Scholz, S., Cookson, M., et al. (2007). Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genetics, 3, e108.PubMedCrossRefGoogle Scholar
  55. Wang, S., Denk, W., & Häusser, M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature Neuroscience, 3, 1266–1273.PubMedCrossRefGoogle Scholar
  56. Watanabe, M. (2008). Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. The Tohoku Journal of Experimental Medicine, 214, 175–190.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sherry-Ann Brown
    • 1
  • Ion I. Moraru
    • 1
  • James C. Schaff
    • 1
  • Leslie M. Loew
    • 1
    Email author
  1. 1.Richard D. Berlin Center for Cell Analysis & ModelingUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations